Cargando…
Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components
Electrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386410/ https://www.ncbi.nlm.nih.gov/pubmed/30742605 http://dx.doi.org/10.1371/journal.pcbi.1006769 |
_version_ | 1783397380193779712 |
---|---|
author | Rogers, Nicholas Hermiz, John Ganji, Mehran Kaestner, Erik Kılıç, Kıvılcım Hossain, Lorraine Thunemann, Martin Cleary, Daniel R. Carter, Bob S. Barba, David Devor, Anna Halgren, Eric Dayeh, Shadi A. Gilja, Vikash |
author_facet | Rogers, Nicholas Hermiz, John Ganji, Mehran Kaestner, Erik Kılıç, Kıvılcım Hossain, Lorraine Thunemann, Martin Cleary, Daniel R. Carter, Bob S. Barba, David Devor, Anna Halgren, Eric Dayeh, Shadi A. Gilja, Vikash |
author_sort | Rogers, Nicholas |
collection | PubMed |
description | Electrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the flexibility in the design of ECoG grids, which is only increasing, it remains an open question what geometry of the electrodes is optimal for an application. Conductive polymer, PEDOT:PSS, coated microelectrodes have an advantage that they can be made very small without losing low impedance. This makes them suitable for evaluating the required granularity of ECoG recording in humans and experimental animals. We used two-dimensional (2D) micro-ECoG grids to record intra-operatively in humans and during acute implantations in mouse with separation distance between neighboring electrodes (i.e., pitch) of 0.4 mm and 0.2/0.25 mm respectively. To assess the spatial properties of the signals, we used the average correlation between electrodes as a function of the pitch. In agreement with prior studies, we find a strong frequency dependence in the spatial scale of correlation. By applying independent component analysis (ICA), we find that the spatial pattern of correlation is largely due to contributions from multiple spatially extended, time-locked sources present at any given time. Our analysis indicates the presence of spatially structured activity down to the sub-millimeter spatial scale in ECoG despite the effects of volume conduction, justifying the use of dense micro-ECoG grids. |
format | Online Article Text |
id | pubmed-6386410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63864102019-03-08 Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components Rogers, Nicholas Hermiz, John Ganji, Mehran Kaestner, Erik Kılıç, Kıvılcım Hossain, Lorraine Thunemann, Martin Cleary, Daniel R. Carter, Bob S. Barba, David Devor, Anna Halgren, Eric Dayeh, Shadi A. Gilja, Vikash PLoS Comput Biol Research Article Electrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the flexibility in the design of ECoG grids, which is only increasing, it remains an open question what geometry of the electrodes is optimal for an application. Conductive polymer, PEDOT:PSS, coated microelectrodes have an advantage that they can be made very small without losing low impedance. This makes them suitable for evaluating the required granularity of ECoG recording in humans and experimental animals. We used two-dimensional (2D) micro-ECoG grids to record intra-operatively in humans and during acute implantations in mouse with separation distance between neighboring electrodes (i.e., pitch) of 0.4 mm and 0.2/0.25 mm respectively. To assess the spatial properties of the signals, we used the average correlation between electrodes as a function of the pitch. In agreement with prior studies, we find a strong frequency dependence in the spatial scale of correlation. By applying independent component analysis (ICA), we find that the spatial pattern of correlation is largely due to contributions from multiple spatially extended, time-locked sources present at any given time. Our analysis indicates the presence of spatially structured activity down to the sub-millimeter spatial scale in ECoG despite the effects of volume conduction, justifying the use of dense micro-ECoG grids. Public Library of Science 2019-02-11 /pmc/articles/PMC6386410/ /pubmed/30742605 http://dx.doi.org/10.1371/journal.pcbi.1006769 Text en © 2019 Rogers et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rogers, Nicholas Hermiz, John Ganji, Mehran Kaestner, Erik Kılıç, Kıvılcım Hossain, Lorraine Thunemann, Martin Cleary, Daniel R. Carter, Bob S. Barba, David Devor, Anna Halgren, Eric Dayeh, Shadi A. Gilja, Vikash Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title | Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title_full | Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title_fullStr | Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title_full_unstemmed | Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title_short | Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components |
title_sort | correlation structure in micro-ecog recordings is described by spatially coherent components |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386410/ https://www.ncbi.nlm.nih.gov/pubmed/30742605 http://dx.doi.org/10.1371/journal.pcbi.1006769 |
work_keys_str_mv | AT rogersnicholas correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT hermizjohn correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT ganjimehran correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT kaestnererik correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT kılıckıvılcım correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT hossainlorraine correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT thunemannmartin correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT clearydanielr correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT carterbobs correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT barbadavid correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT devoranna correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT halgreneric correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT dayehshadia correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents AT giljavikash correlationstructureinmicroecogrecordingsisdescribedbyspatiallycoherentcomponents |