Cargando…
Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin
Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386445/ https://www.ncbi.nlm.nih.gov/pubmed/30794698 http://dx.doi.org/10.1371/journal.pone.0212787 |
_version_ | 1783397385800515584 |
---|---|
author | Berg, Jasmine S. Jézéquel, Didier Duverger, Arnaud Lamy, Dominique Laberty-Robert, Christel Miot, Jennyfer |
author_facet | Berg, Jasmine S. Jézéquel, Didier Duverger, Arnaud Lamy, Dominique Laberty-Robert, Christel Miot, Jennyfer |
author_sort | Berg, Jasmine S. |
collection | PubMed |
description | Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predominate even under ferruginous conditions. In this study, we investigated the potential for bacterial iron and sulfur metabolisms in the iron-rich (1.2 mM dissolved Fe(2+)), sulfate-poor (< 20 μM) Lake Pavin which is expected to host large populations of iron-reducing and iron-oxidizing microorganisms influencing the mineralogy of iron precipitates in its permanently anoxic bottom waters and sediments. 16S rRNA gene amplicon libraries from at and below the oxycline revealed that highly diverse populations of sulfur/sulfate-reducing (SRB) and sulfur/sulfide-oxidizing bacteria represented up to 10% and 5% of the total recovered sequences in situ, respectively, which together was roughly equivalent to the fraction of putative iron cycling bacteria. In enrichment cultures amended with key iron phases identified in situ (ferric iron phosphate, ferrihydrite) or with soluble iron (Fe(2+)), SRB were the most competitive microorganisms, both in the presence and absence of added sulfate. The large fraction of Sulfurospirillum, which are known to reduce thiosulfate and sulfur but not sulfate, present in all cultures was likely supported by Fe(III)-driven sulfide oxidation. These results support the hypothesis that an active cryptic sulfur cycle interacts with iron cycling in the lake. Analyses of mineral phases showed that ferric phosphate in cultures dominated by SRB was transformed to vivianite with concomitant precipitation of iron sulfides. As colloidal FeS and vivianite have been reported in the monimolimnion, we suggest that SRB along with iron-reducing bacteria strongly influence iron mineralogy in the water column and sediments of Lake Pavin. |
format | Online Article Text |
id | pubmed-6386445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63864452019-03-09 Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin Berg, Jasmine S. Jézéquel, Didier Duverger, Arnaud Lamy, Dominique Laberty-Robert, Christel Miot, Jennyfer PLoS One Research Article Both iron- and sulfur- reducing bacteria strongly impact the mineralogy of iron, but their activity has long been thought to be spatially and temporally segregated based on the higher thermodynamic yields of iron over sulfate reduction. However, recent evidence suggests that sulfur cycling can predominate even under ferruginous conditions. In this study, we investigated the potential for bacterial iron and sulfur metabolisms in the iron-rich (1.2 mM dissolved Fe(2+)), sulfate-poor (< 20 μM) Lake Pavin which is expected to host large populations of iron-reducing and iron-oxidizing microorganisms influencing the mineralogy of iron precipitates in its permanently anoxic bottom waters and sediments. 16S rRNA gene amplicon libraries from at and below the oxycline revealed that highly diverse populations of sulfur/sulfate-reducing (SRB) and sulfur/sulfide-oxidizing bacteria represented up to 10% and 5% of the total recovered sequences in situ, respectively, which together was roughly equivalent to the fraction of putative iron cycling bacteria. In enrichment cultures amended with key iron phases identified in situ (ferric iron phosphate, ferrihydrite) or with soluble iron (Fe(2+)), SRB were the most competitive microorganisms, both in the presence and absence of added sulfate. The large fraction of Sulfurospirillum, which are known to reduce thiosulfate and sulfur but not sulfate, present in all cultures was likely supported by Fe(III)-driven sulfide oxidation. These results support the hypothesis that an active cryptic sulfur cycle interacts with iron cycling in the lake. Analyses of mineral phases showed that ferric phosphate in cultures dominated by SRB was transformed to vivianite with concomitant precipitation of iron sulfides. As colloidal FeS and vivianite have been reported in the monimolimnion, we suggest that SRB along with iron-reducing bacteria strongly influence iron mineralogy in the water column and sediments of Lake Pavin. Public Library of Science 2019-02-22 /pmc/articles/PMC6386445/ /pubmed/30794698 http://dx.doi.org/10.1371/journal.pone.0212787 Text en © 2019 Berg et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Berg, Jasmine S. Jézéquel, Didier Duverger, Arnaud Lamy, Dominique Laberty-Robert, Christel Miot, Jennyfer Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title | Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title_full | Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title_fullStr | Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title_full_unstemmed | Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title_short | Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin |
title_sort | microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of lake pavin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386445/ https://www.ncbi.nlm.nih.gov/pubmed/30794698 http://dx.doi.org/10.1371/journal.pone.0212787 |
work_keys_str_mv | AT bergjasmines microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin AT jezequeldidier microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin AT duvergerarnaud microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin AT lamydominique microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin AT labertyrobertchristel microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin AT miotjennyfer microbialdiversityinvolvedinironandcrypticsulfurcyclingintheferruginouslowsulfatewatersoflakepavin |