Cargando…

Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae

Viral-bacterial coinfections, such as with influenza A virus and Streptococcus pneumoniae (S.p.), are known to cause severe pneumonia. It is well known that the host response has an important role in disease. Interleukin-1β (IL-1β) is an important immune signaling cytokine responsible for inflammati...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez, Angeline E., Bogart, Christopher, Gilbert, Christopher M., McCullers, Jonathan A., Smith, Amber M., Kanneganti, Thirumala-Devi, Lupfer, Christopher R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386446/
https://www.ncbi.nlm.nih.gov/pubmed/30794604
http://dx.doi.org/10.1371/journal.pone.0212236
Descripción
Sumario:Viral-bacterial coinfections, such as with influenza A virus and Streptococcus pneumoniae (S.p.), are known to cause severe pneumonia. It is well known that the host response has an important role in disease. Interleukin-1β (IL-1β) is an important immune signaling cytokine responsible for inflammation and has been previously shown to contribute to disease severity in numerous infections. Other studies in mice indicate that IL-1β levels are dramatically elevated during IAV-S.p. coinfection. However, the regulation of IL-1β during coinfection is unknown. Here, we report the NLRP3 inflammasome is the major inflammasome regulating IL-1β activation during coinfection. Furthermore, elevated IL-1β mRNA expression is due to enhanced TLR2-MYD88 signaling, which increases the amount of pro-IL-1β substrate for the inflammasome to process. Finally, NLRP3 and high IL-1β levels were associated with increased bacterial load in the brain. Our results show the NLRP3 inflammasome is not protective during IAV-S.p. coinfection.