Cargando…

PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis

Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Yusibeska, Rocha, Jorge, Hael, Ana L., van Gestel, Jordi, Vlamakis, Hera, Cywes-Bentley, Colette, Cubillos-Ruiz, Juan R., Pier, Gerald B., Gilmore, Michael S., Kolter, Roberto, Morales, Diana K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386517/
https://www.ncbi.nlm.nih.gov/pubmed/30742693
http://dx.doi.org/10.1371/journal.ppat.1007571
_version_ 1783397395464192000
author Ramos, Yusibeska
Rocha, Jorge
Hael, Ana L.
van Gestel, Jordi
Vlamakis, Hera
Cywes-Bentley, Colette
Cubillos-Ruiz, Juan R.
Pier, Gerald B.
Gilmore, Michael S.
Kolter, Roberto
Morales, Diana K.
author_facet Ramos, Yusibeska
Rocha, Jorge
Hael, Ana L.
van Gestel, Jordi
Vlamakis, Hera
Cywes-Bentley, Colette
Cubillos-Ruiz, Juan R.
Pier, Gerald B.
Gilmore, Michael S.
Kolter, Roberto
Morales, Diana K.
author_sort Ramos, Yusibeska
collection PubMed
description Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic.
format Online
Article
Text
id pubmed-6386517
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63865172019-03-08 PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis Ramos, Yusibeska Rocha, Jorge Hael, Ana L. van Gestel, Jordi Vlamakis, Hera Cywes-Bentley, Colette Cubillos-Ruiz, Juan R. Pier, Gerald B. Gilmore, Michael S. Kolter, Roberto Morales, Diana K. PLoS Pathog Research Article Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic. Public Library of Science 2019-02-11 /pmc/articles/PMC6386517/ /pubmed/30742693 http://dx.doi.org/10.1371/journal.ppat.1007571 Text en © 2019 Ramos et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ramos, Yusibeska
Rocha, Jorge
Hael, Ana L.
van Gestel, Jordi
Vlamakis, Hera
Cywes-Bentley, Colette
Cubillos-Ruiz, Juan R.
Pier, Gerald B.
Gilmore, Michael S.
Kolter, Roberto
Morales, Diana K.
PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title_full PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title_fullStr PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title_full_unstemmed PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title_short PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
title_sort polyglcnac-containing exopolymers enable surface penetration by non-motile enterococcus faecalis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386517/
https://www.ncbi.nlm.nih.gov/pubmed/30742693
http://dx.doi.org/10.1371/journal.ppat.1007571
work_keys_str_mv AT ramosyusibeska polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT rochajorge polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT haelanal polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT vangesteljordi polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT vlamakishera polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT cywesbentleycolette polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT cubillosruizjuanr polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT piergeraldb polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT gilmoremichaels polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT kolterroberto polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis
AT moralesdianak polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis