Cargando…
PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386517/ https://www.ncbi.nlm.nih.gov/pubmed/30742693 http://dx.doi.org/10.1371/journal.ppat.1007571 |
_version_ | 1783397395464192000 |
---|---|
author | Ramos, Yusibeska Rocha, Jorge Hael, Ana L. van Gestel, Jordi Vlamakis, Hera Cywes-Bentley, Colette Cubillos-Ruiz, Juan R. Pier, Gerald B. Gilmore, Michael S. Kolter, Roberto Morales, Diana K. |
author_facet | Ramos, Yusibeska Rocha, Jorge Hael, Ana L. van Gestel, Jordi Vlamakis, Hera Cywes-Bentley, Colette Cubillos-Ruiz, Juan R. Pier, Gerald B. Gilmore, Michael S. Kolter, Roberto Morales, Diana K. |
author_sort | Ramos, Yusibeska |
collection | PubMed |
description | Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic. |
format | Online Article Text |
id | pubmed-6386517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63865172019-03-08 PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis Ramos, Yusibeska Rocha, Jorge Hael, Ana L. van Gestel, Jordi Vlamakis, Hera Cywes-Bentley, Colette Cubillos-Ruiz, Juan R. Pier, Gerald B. Gilmore, Michael S. Kolter, Roberto Morales, Diana K. PLoS Pathog Research Article Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic. Public Library of Science 2019-02-11 /pmc/articles/PMC6386517/ /pubmed/30742693 http://dx.doi.org/10.1371/journal.ppat.1007571 Text en © 2019 Ramos et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ramos, Yusibeska Rocha, Jorge Hael, Ana L. van Gestel, Jordi Vlamakis, Hera Cywes-Bentley, Colette Cubillos-Ruiz, Juan R. Pier, Gerald B. Gilmore, Michael S. Kolter, Roberto Morales, Diana K. PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title | PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title_full | PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title_fullStr | PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title_full_unstemmed | PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title_short | PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis |
title_sort | polyglcnac-containing exopolymers enable surface penetration by non-motile enterococcus faecalis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386517/ https://www.ncbi.nlm.nih.gov/pubmed/30742693 http://dx.doi.org/10.1371/journal.ppat.1007571 |
work_keys_str_mv | AT ramosyusibeska polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT rochajorge polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT haelanal polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT vangesteljordi polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT vlamakishera polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT cywesbentleycolette polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT cubillosruizjuanr polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT piergeraldb polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT gilmoremichaels polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT kolterroberto polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis AT moralesdianak polyglcnaccontainingexopolymersenablesurfacepenetrationbynonmotileenterococcusfaecalis |