Cargando…

A nanofluidic ion regulation membrane with aligned cellulose nanofibers

The advancement of nanofluidic applications will require the identification of materials with high-conductivity nanoscale channels that can be readily obtained at massive scale. Inspired by the transpiration in mesostructured trees, we report a nanofluidic membrane consisting of densely packed cellu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tian, Li, Sylvia Xin, Kong, Weiqing, Chen, Chaoji, Hitz, Emily, Jia, Chao, Dai, Jiaqi, Zhang, Xin, Briber, Robert, Siwy, Zuzanna, Reed, Mark, Hu, Liangbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386557/
https://www.ncbi.nlm.nih.gov/pubmed/30801009
http://dx.doi.org/10.1126/sciadv.aau4238
_version_ 1783397399847239680
author Li, Tian
Li, Sylvia Xin
Kong, Weiqing
Chen, Chaoji
Hitz, Emily
Jia, Chao
Dai, Jiaqi
Zhang, Xin
Briber, Robert
Siwy, Zuzanna
Reed, Mark
Hu, Liangbing
author_facet Li, Tian
Li, Sylvia Xin
Kong, Weiqing
Chen, Chaoji
Hitz, Emily
Jia, Chao
Dai, Jiaqi
Zhang, Xin
Briber, Robert
Siwy, Zuzanna
Reed, Mark
Hu, Liangbing
author_sort Li, Tian
collection PubMed
description The advancement of nanofluidic applications will require the identification of materials with high-conductivity nanoscale channels that can be readily obtained at massive scale. Inspired by the transpiration in mesostructured trees, we report a nanofluidic membrane consisting of densely packed cellulose nanofibers directly derived from wood. Numerous nanochannels are produced among an expansive array of one-dimensional cellulose nanofibers. The abundant functional groups of cellulose enable facile tuning of the surface charge density via chemical modification. The nanofiber-nanofiber spacing can also be tuned from ~2 to ~20 nm by structural engineering. The surface-charge-governed ionic transport region shows a high ionic conductivity plateau of ~2 mS cm(−1) (up to 10 mM). The nanofluidic membrane also exhibits excellent mechanical flexibility, demonstrating stable performance even when the membrane is folded 150°. Combining the inherent advantages of cellulose, this novel class of membrane offers an environmentally responsible strategy for flexible and printable nanofluidic applications.
format Online
Article
Text
id pubmed-6386557
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-63865572019-02-23 A nanofluidic ion regulation membrane with aligned cellulose nanofibers Li, Tian Li, Sylvia Xin Kong, Weiqing Chen, Chaoji Hitz, Emily Jia, Chao Dai, Jiaqi Zhang, Xin Briber, Robert Siwy, Zuzanna Reed, Mark Hu, Liangbing Sci Adv Research Articles The advancement of nanofluidic applications will require the identification of materials with high-conductivity nanoscale channels that can be readily obtained at massive scale. Inspired by the transpiration in mesostructured trees, we report a nanofluidic membrane consisting of densely packed cellulose nanofibers directly derived from wood. Numerous nanochannels are produced among an expansive array of one-dimensional cellulose nanofibers. The abundant functional groups of cellulose enable facile tuning of the surface charge density via chemical modification. The nanofiber-nanofiber spacing can also be tuned from ~2 to ~20 nm by structural engineering. The surface-charge-governed ionic transport region shows a high ionic conductivity plateau of ~2 mS cm(−1) (up to 10 mM). The nanofluidic membrane also exhibits excellent mechanical flexibility, demonstrating stable performance even when the membrane is folded 150°. Combining the inherent advantages of cellulose, this novel class of membrane offers an environmentally responsible strategy for flexible and printable nanofluidic applications. American Association for the Advancement of Science 2019-02-22 /pmc/articles/PMC6386557/ /pubmed/30801009 http://dx.doi.org/10.1126/sciadv.aau4238 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Li, Tian
Li, Sylvia Xin
Kong, Weiqing
Chen, Chaoji
Hitz, Emily
Jia, Chao
Dai, Jiaqi
Zhang, Xin
Briber, Robert
Siwy, Zuzanna
Reed, Mark
Hu, Liangbing
A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title_full A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title_fullStr A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title_full_unstemmed A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title_short A nanofluidic ion regulation membrane with aligned cellulose nanofibers
title_sort nanofluidic ion regulation membrane with aligned cellulose nanofibers
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386557/
https://www.ncbi.nlm.nih.gov/pubmed/30801009
http://dx.doi.org/10.1126/sciadv.aau4238
work_keys_str_mv AT litian ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT lisylviaxin ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT kongweiqing ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT chenchaoji ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT hitzemily ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT jiachao ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT daijiaqi ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT zhangxin ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT briberrobert ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT siwyzuzanna ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT reedmark ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT huliangbing ananofluidicionregulationmembranewithalignedcellulosenanofibers
AT litian nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT lisylviaxin nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT kongweiqing nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT chenchaoji nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT hitzemily nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT jiachao nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT daijiaqi nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT zhangxin nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT briberrobert nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT siwyzuzanna nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT reedmark nanofluidicionregulationmembranewithalignedcellulosenanofibers
AT huliangbing nanofluidicionregulationmembranewithalignedcellulosenanofibers