Cargando…
Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors’ Data
BACKGROUND: Time-resolved quantification of physical activity can contribute to both personalized medicine and epidemiological research studies, for example, managing and identifying triggers of asthma exacerbations. A growing number of reportedly accurate machine learning algorithms for human activ...
Autores principales: | Li, Kenan, Habre, Rima, Deng, Huiyu, Urman, Robert, Morrison, John, Gilliland, Frank D, Ambite, José Luis, Stripelis, Dimitris, Chiang, Yao-Yi, Lin, Yijun, Bui, Alex AT, King, Christine, Hosseini, Anahita, Vliet, Eleanne Van, Sarrafzadeh, Majid, Eckel, Sandrah P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386646/ https://www.ncbi.nlm.nih.gov/pubmed/30730297 http://dx.doi.org/10.2196/11201 |
Ejemplares similares
-
W-TSS: A Wavelet-Based Algorithm for Discovering Time Series Shapelets
por: Li, Kenan, et al.
Publicado: (2021) -
Daily Associations of Air Pollution and Pediatric Asthma Risk Using the Biomedical REAI-Time Health Evaluation (BREATHE) Kit
por: Hao, Hua, et al.
Publicado: (2022) -
Biomedical REAl-Time Health Evaluation (BREATHE): toward an mHealth informatics platform
por: Bui, Alex A T, et al.
Publicado: (2020) -
Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures
por: Li, Kenan, et al.
Publicado: (2021) -
Understanding the importance of key risk factors in predicting chronic bronchitic symptoms using a machine learning approach
por: Deng, Huiyu, et al.
Publicado: (2019)