Cargando…
Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
In the literature, there are substantial machine learning attempts to classify schizophrenia based on alterations in resting-state (RS) brain patterns using functional magnetic resonance imaging (fMRI). Most earlier studies modelled patients undergoing treatment, entailing confounding with drug effe...
Autores principales: | Kalmady, Sunil Vasu, Greiner, Russell, Agrawal, Rimjhim, Shivakumar, Venkataram, Narayanaswamy, Janardhanan C., Brown, Matthew R. G., Greenshaw, Andrew J, Dursun, Serdar M, Venkatasubramanian, Ganesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386753/ https://www.ncbi.nlm.nih.gov/pubmed/30659193 http://dx.doi.org/10.1038/s41537-018-0070-8 |
Ejemplares similares
-
Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives
por: Kalmady, Sunil Vasu, et al.
Publicado: (2020) -
Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
por: Paul, Animesh Kumar, et al.
Publicado: (2022) -
In Silico Model-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology
por: Agrawal, Rimjhim, et al.
Publicado: (2017) -
Neurocognitive Impairments in Unaffected First-degree Relatives of Schizophrenia
por: Harave, Virupaksha Shanmugam, et al.
Publicado: (2017) -
Clinical correlates of parametric digit-symbol substitution test in schizophrenia
por: Amaresha, Anekal C., et al.
Publicado: (2014)