Cargando…

Minimization of the Settling Time of Variable Area Flowmeters

In the article a differential equation describing transient behavior of variable area (VA) meters has been developed and validated experimentally for air as a measured fluid and for two float shapes—plumb bob and sphere. A modified version of simplex algorithm adapted for nonlinear constraint optimi...

Descripción completa

Detalles Bibliográficos
Autores principales: Turkowski, Mateusz, Szczecki, Artur, Szudarek, Maciej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386847/
https://www.ncbi.nlm.nih.gov/pubmed/30691238
http://dx.doi.org/10.3390/s19030530
Descripción
Sumario:In the article a differential equation describing transient behavior of variable area (VA) meters has been developed and validated experimentally for air as a measured fluid and for two float shapes—plumb bob and sphere. A modified version of simplex algorithm adapted for nonlinear constraint optimization problems was applied to minimize the settling time of VA meters in two cases. In the first case both the float and tube geometry were altered. In the second case only the float geometry was modified. The second case has been validated experimentally. The theory and experiment is in reasonable agreement (under 5% of full scale), which is satisfactory for the purposes of optimization of VA flowmeters dynamic performance. Analytical model of VA flowmeter has been proven to be a proper tool for optimization. Settling times obtained during the optimization process were several times shorter than these of commercially manufactured instruments. Overshoot has not exceeded the assumed value of 3%.