Cargando…
Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation
Vehicle detection with category inference on video sequence data is an important but challenging task for urban traffic surveillance. The difficulty of this task lies in the fact that it requires accurate localization of relatively small vehicles in complex scenes and expects real-time detection. In...
Autores principales: | Zhang, Fukai, Li, Ce, Yang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387095/ https://www.ncbi.nlm.nih.gov/pubmed/30704152 http://dx.doi.org/10.3390/s19030594 |
Ejemplares similares
-
A feature fusion deep-projection convolution neural network for vehicle detection in aerial images
por: Wang, Bin, et al.
Publicado: (2021) -
CPD-CCNN: classification of pepper disease using a concatenation of convolutional neural network models
por: Bezabih, Yohannes Agegnhu, et al.
Publicado: (2023) -
Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks
por: Zhong, Jiandan, et al.
Publicado: (2017) -
Shadow-Based Vehicle Detection in Urban Traffic
por: Ibarra-Arenado, Manuel, et al.
Publicado: (2017) -
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022)