Cargando…
Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants
This paper presents a fully integrated photodiode-based low-power and low-mismatch stimulator for a subretinal prosthesis. It is known that a subretinal prosthesis achieves 1600-pixel stimulators on a limited single-chip area that is implanted beneath the bipolar cell layer. However, the high-densit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387200/ https://www.ncbi.nlm.nih.gov/pubmed/30696016 http://dx.doi.org/10.3390/s19030536 |
Sumario: | This paper presents a fully integrated photodiode-based low-power and low-mismatch stimulator for a subretinal prosthesis. It is known that a subretinal prosthesis achieves 1600-pixel stimulators on a limited single-chip area that is implanted beneath the bipolar cell layer. However, the high-density pixels cause high power dissipation during stimulation and high fabrication costs because of special process technologies such as the complementary metal-oxide semiconductor CMOS image sensor process. In addition, the many residual charges arising from the high-density pixel stimulation have deleterious effects, such as tissue damage and electrode corrosion, on the retina tissue. In this work, we adopted a switched-capacitor current mirror technique for the single-pixel stimulator (SPStim) that enables low power consumption and low mismatch in the subretinal device. The customized P+/N-well photodiode used to sense the incident light in the SPStim also reduces the fabrication cost. The 64-pixel stimulators are fabricated in a standard 0.35-μm CMOS process along with a global digital controller, which occupies a chip area of 4.3 × 3.2 mm(2) and are ex-vivo demonstrated using a dissected pig eyeball. According to measured results, the SPStim accomplishes a maximum biphasic pulse amplitude of 143 μA, which dissipates an average power of 167 μW in a stimulation period of 5 ms, and an average mismatch of 1.12 % between the cathodic and anodic pulses. |
---|