Cargando…
Potential for Drug Repositioning of Midazolam for Dentin Regeneration
Drug repositioning promises the advantages of reducing costs and expediting approval schedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulates inhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potential for drug repositioning of MD...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387224/ https://www.ncbi.nlm.nih.gov/pubmed/30720745 http://dx.doi.org/10.3390/ijms20030670 |
Sumario: | Drug repositioning promises the advantages of reducing costs and expediting approval schedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulates inhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potential for drug repositioning of MDZ for dentin regeneration. A porcine dental pulp-derived cell line (PPU-7) that we established was cultured in MDZ-only, the combination of MDZ with bone morphogenetic protein 2, and the combination of MDZ with transforming growth factor-beta 1. The differentiation of PPU-7 into odontoblasts was investigated at the cell biological and genetic level. Mineralized nodules formed in PPU-7 were characterized at the protein and crystal engineering levels. The MDZ-only treatment enhanced the alkaline phosphatase activity and mRNA levels of odontoblast differentiation marker genes, and precipitated nodule formation containing a dentin-specific protein (dentin phosphoprotein). The nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. The morphology, orientation, and chemical composition of the hydroxyapatite crystals were similar to those of hydroxyapatite that had transformed from amorphous calcium phosphate nanoparticles, as well as the hydroxyapatite in human molar dentin. Our investigation showed that a combination of MDZ and PPU-7 cells possesses high potential of drug repositioning for dentin regeneration. |
---|