Cargando…
Research on Damage Detection of a 3D Steel Frame Model Using Smartphones
Smartphones which are built into the suite of sensors, network transmission, data storage, and embedded processing capabilities provide a wide range of response measurement opportunities for structural health monitoring (SHM). The objective of this work was to evaluate and validate the use of smartp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387233/ https://www.ncbi.nlm.nih.gov/pubmed/30759851 http://dx.doi.org/10.3390/s19030745 |
_version_ | 1783397530100301824 |
---|---|
author | Xie, Botao Li, Jinke Zhao, Xuefeng |
author_facet | Xie, Botao Li, Jinke Zhao, Xuefeng |
author_sort | Xie, Botao |
collection | PubMed |
description | Smartphones which are built into the suite of sensors, network transmission, data storage, and embedded processing capabilities provide a wide range of response measurement opportunities for structural health monitoring (SHM). The objective of this work was to evaluate and validate the use of smartphones for monitoring damage states in a three-dimensional (3D) steel frame structure subjected to shaking table earthquake excitation. The steel frame is a single-layer structure with four viscous dampers mounted at the beam-column joints to simulate different damage states at their respective locations. The structural acceleration and displacement responses of undamaged and damaged frames were obtained simultaneously by using smartphones and conventional sensors, while the collected response data were compared. Since smartphones can be used to monitor 3D acceleration in a given space and biaxial displacement in a given plane, the acceleration and displacement responses of the Y-axis of the model structure were obtained. Wavelet packet decomposition and relative wavelet entropy (RWE) were employed to analyze the acceleration data to detect damage. The results show that the acceleration responses that were monitored by the smartphones are well matched with the traditional sensors and the errors are generally within 5%. The comparison of the displacement acquired by smartphones and laser displacement sensors is basically good, and error analysis shows that smartphones with a displacement response sampling rate of 30 Hz are more suitable for monitoring structures with low natural frequencies. The damage detection using two kinds of sensors are relatively good. However, the asymmetry of the structure’s spatial stiffness will lead to greater RWE value errors being obtained from the smartphones monitoring data. |
format | Online Article Text |
id | pubmed-6387233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63872332019-02-26 Research on Damage Detection of a 3D Steel Frame Model Using Smartphones Xie, Botao Li, Jinke Zhao, Xuefeng Sensors (Basel) Article Smartphones which are built into the suite of sensors, network transmission, data storage, and embedded processing capabilities provide a wide range of response measurement opportunities for structural health monitoring (SHM). The objective of this work was to evaluate and validate the use of smartphones for monitoring damage states in a three-dimensional (3D) steel frame structure subjected to shaking table earthquake excitation. The steel frame is a single-layer structure with four viscous dampers mounted at the beam-column joints to simulate different damage states at their respective locations. The structural acceleration and displacement responses of undamaged and damaged frames were obtained simultaneously by using smartphones and conventional sensors, while the collected response data were compared. Since smartphones can be used to monitor 3D acceleration in a given space and biaxial displacement in a given plane, the acceleration and displacement responses of the Y-axis of the model structure were obtained. Wavelet packet decomposition and relative wavelet entropy (RWE) were employed to analyze the acceleration data to detect damage. The results show that the acceleration responses that were monitored by the smartphones are well matched with the traditional sensors and the errors are generally within 5%. The comparison of the displacement acquired by smartphones and laser displacement sensors is basically good, and error analysis shows that smartphones with a displacement response sampling rate of 30 Hz are more suitable for monitoring structures with low natural frequencies. The damage detection using two kinds of sensors are relatively good. However, the asymmetry of the structure’s spatial stiffness will lead to greater RWE value errors being obtained from the smartphones monitoring data. MDPI 2019-02-12 /pmc/articles/PMC6387233/ /pubmed/30759851 http://dx.doi.org/10.3390/s19030745 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xie, Botao Li, Jinke Zhao, Xuefeng Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title | Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title_full | Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title_fullStr | Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title_full_unstemmed | Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title_short | Research on Damage Detection of a 3D Steel Frame Model Using Smartphones |
title_sort | research on damage detection of a 3d steel frame model using smartphones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387233/ https://www.ncbi.nlm.nih.gov/pubmed/30759851 http://dx.doi.org/10.3390/s19030745 |
work_keys_str_mv | AT xiebotao researchondamagedetectionofa3dsteelframemodelusingsmartphones AT lijinke researchondamagedetectionofa3dsteelframemodelusingsmartphones AT zhaoxuefeng researchondamagedetectionofa3dsteelframemodelusingsmartphones |