Cargando…
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework
Successful applications of brain-computer interface (BCI) approaches to motor imagery (MI) are still limited. In this paper, we propose a classification framework for MI electroencephalogram (EEG) signals that combines a convolutional neural network (CNN) architecture with a variational autoencoder...
Autores principales: | Dai, Mengxi, Zheng, Dezhi, Na, Rui, Wang, Shuai, Zhang, Shuailei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387242/ https://www.ncbi.nlm.nih.gov/pubmed/30699946 http://dx.doi.org/10.3390/s19030551 |
Ejemplares similares
-
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
por: Dai, Mengxi, et al.
Publicado: (2018) -
Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off
por: León, Javier, et al.
Publicado: (2020) -
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022) -
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022)