Cargando…

Incorporating Negative Sample Training for Ship Detection Based on Deep Learning

While ship detection using high-resolution optical satellite images plays an important role in various civilian fields—including maritime traffic survey and maritime rescue—it is a difficult task due to influences of the complex background, especially when ships are near to land. In current literatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Lianru, He, Yiqun, Sun, Xu, Jia, Xiuping, Zhang, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387301/
https://www.ncbi.nlm.nih.gov/pubmed/30736485
http://dx.doi.org/10.3390/s19030684
Descripción
Sumario:While ship detection using high-resolution optical satellite images plays an important role in various civilian fields—including maritime traffic survey and maritime rescue—it is a difficult task due to influences of the complex background, especially when ships are near to land. In current literatures, land masking is generally required before ship detection to avoid many false alarms on land. However, sea–land segmentation not only has the risk of segmentation errors, but also requires expertise to adjust parameters. In this study, Faster Region-based Convolutional Neural Network (Faster R-CNN) is applied to detect ships without the need for land masking. We propose an effective training strategy for the Faster R-CNN by incorporating a large number of images containing only terrestrial regions as negative samples without any manual marking, which is different from the selection of negative samples by targeted way in other detection methods. The experiments using Gaofen-1 satellite (GF-1), Gaofen-2 satellite (GF-2), and Jilin-1 satellite (JL-1) images as testing datasets under different ship detection conditions were carried out to evaluate the effectiveness of the proposed strategy in the avoidance of false alarms on land. The results show that the method incorporating negative sample training can largely reduce false alarms in terrestrial areas, and is superior in detection performance, algorithm complexity, and time consumption. Compared with the method based on sea–land segmentation, the proposed method achieves the absolute increment of 70% of the F1-measure, when the image contains large land area such as the GF-1 image, and achieves the absolute increment of 42.5% for images with complex harbors and many coastal ships, such as the JL-1 images.