Cargando…

A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing

Multivariate optical computing (MOC) is a compressed sensing technique with the ability to provide accurate spectroscopic compositional analysis in a variety of different applications to multiple industries. Indeed, recent developments have demonstrated the successful deployment of MOC sensors in do...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Christopher M., Dai, Bin, Price, Jimmy, Li, Jian, Pearl, Megan, Soltmann, Bill, Myrick, Michael L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387322/
https://www.ncbi.nlm.nih.gov/pubmed/30744066
http://dx.doi.org/10.3390/s19030701
_version_ 1783397555245154304
author Jones, Christopher M.
Dai, Bin
Price, Jimmy
Li, Jian
Pearl, Megan
Soltmann, Bill
Myrick, Michael L.
author_facet Jones, Christopher M.
Dai, Bin
Price, Jimmy
Li, Jian
Pearl, Megan
Soltmann, Bill
Myrick, Michael L.
author_sort Jones, Christopher M.
collection PubMed
description Multivariate optical computing (MOC) is a compressed sensing technique with the ability to provide accurate spectroscopic compositional analysis in a variety of different applications to multiple industries. Indeed, recent developments have demonstrated the successful deployment of MOC sensors in downhole/well-logging environments to interrogate the composition of hydrocarbon and other chemical constituents in oil and gas reservoirs. However, new challenges have necessitated sensors that operate at high temperatures and pressures (up to 230 °C and 138 MPa) as well as even smaller areas that require the miniaturization of their physical footprint. To this end, this paper details the design, fabrication, and testing of a novel miniature-sized MOC sensor suited for harsh environments. A micrometer-sized optical element provides the active spectroscopic analysis. The resulting MOC sensor is no larger than two standard AAA batteries yet is capable of operating in high temperature and pressure conditions while providing accurate spectroscopic compositional analysis comparable to a laboratory Fourier transform infrared spectrometer.
format Online
Article
Text
id pubmed-6387322
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63873222019-02-26 A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing Jones, Christopher M. Dai, Bin Price, Jimmy Li, Jian Pearl, Megan Soltmann, Bill Myrick, Michael L. Sensors (Basel) Article Multivariate optical computing (MOC) is a compressed sensing technique with the ability to provide accurate spectroscopic compositional analysis in a variety of different applications to multiple industries. Indeed, recent developments have demonstrated the successful deployment of MOC sensors in downhole/well-logging environments to interrogate the composition of hydrocarbon and other chemical constituents in oil and gas reservoirs. However, new challenges have necessitated sensors that operate at high temperatures and pressures (up to 230 °C and 138 MPa) as well as even smaller areas that require the miniaturization of their physical footprint. To this end, this paper details the design, fabrication, and testing of a novel miniature-sized MOC sensor suited for harsh environments. A micrometer-sized optical element provides the active spectroscopic analysis. The resulting MOC sensor is no larger than two standard AAA batteries yet is capable of operating in high temperature and pressure conditions while providing accurate spectroscopic compositional analysis comparable to a laboratory Fourier transform infrared spectrometer. MDPI 2019-02-08 /pmc/articles/PMC6387322/ /pubmed/30744066 http://dx.doi.org/10.3390/s19030701 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jones, Christopher M.
Dai, Bin
Price, Jimmy
Li, Jian
Pearl, Megan
Soltmann, Bill
Myrick, Michael L.
A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title_full A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title_fullStr A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title_full_unstemmed A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title_short A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing
title_sort new multivariate optical computing microelement and miniature sensor for spectroscopic chemical sensing in harsh environments: design, fabrication, and testing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387322/
https://www.ncbi.nlm.nih.gov/pubmed/30744066
http://dx.doi.org/10.3390/s19030701
work_keys_str_mv AT joneschristopherm anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT daibin anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT pricejimmy anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT lijian anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT pearlmegan anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT soltmannbill anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT myrickmichaell anewmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT joneschristopherm newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT daibin newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT pricejimmy newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT lijian newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT pearlmegan newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT soltmannbill newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting
AT myrickmichaell newmultivariateopticalcomputingmicroelementandminiaturesensorforspectroscopicchemicalsensinginharshenvironmentsdesignfabricationandtesting