Cargando…
A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts
One of the most important aspects of the detection of antioxidant compounds is developing a fast screening method. The screening of the overall relative antioxidant capacity (RAC) of several Romanian hydrosoluble plant extracts is the focus of this work. This is important because of the presence of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387368/ https://www.ncbi.nlm.nih.gov/pubmed/30704125 http://dx.doi.org/10.3390/s19030590 |
_version_ | 1783397565974183936 |
---|---|
author | David, Melinda Şerban, Adrian Popa, Claudia V. Florescu, Monica |
author_facet | David, Melinda Şerban, Adrian Popa, Claudia V. Florescu, Monica |
author_sort | David, Melinda |
collection | PubMed |
description | One of the most important aspects of the detection of antioxidant compounds is developing a fast screening method. The screening of the overall relative antioxidant capacity (RAC) of several Romanian hydrosoluble plant extracts is the focus of this work. This is important because of the presence of increasing levels of reactive oxygen species (such as H(2)O(2)) generates oxidative stress in the human body. The consequences are a large number of medical conditions that can be helped by a larger consumption of plant extracts as food supplements, which do not necessarily contain the specified antioxidant contents. By exploiting the catalytic properties of gold nanoparticles, a specific and sensitive nanoparticle-based label-free electrochemical sensor was developed, where the working parameters were optimized for RAC screening of hydrosoluble plant extracts. First, electrochemical measurements (cyclic voltammetry and amperometry) were used to characterize different nanoparticle-based sensors, revealing the best performance of gold nanoparticle-based sensors, obtaining a RAC of 98% for lavender extracts. The sensing principle is based on the quenching effect of antioxidants for H(2)O(2) amperometric detection, where the decrease in electrical signal suggests an increasing antioxidant capacity. The obtained results were expressed in terms of ascorbic acid and Trolox equivalents in order to be able to correlate our results with classical methods like chemiluminescence and UV-Vis spectrophotometry, where a correlation coefficient of 0.907 was achieved, suggesting a good correlation between electrochemistry and spectrophotometry. Considering these results, the optimized gold nanoparticle-based label-free sensor can be used as a simple, rapid alternative towards classical methods for relative antioxidant capacity detection of hydrosoluble plant extracts. |
format | Online Article Text |
id | pubmed-6387368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63873682019-02-26 A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts David, Melinda Şerban, Adrian Popa, Claudia V. Florescu, Monica Sensors (Basel) Article One of the most important aspects of the detection of antioxidant compounds is developing a fast screening method. The screening of the overall relative antioxidant capacity (RAC) of several Romanian hydrosoluble plant extracts is the focus of this work. This is important because of the presence of increasing levels of reactive oxygen species (such as H(2)O(2)) generates oxidative stress in the human body. The consequences are a large number of medical conditions that can be helped by a larger consumption of plant extracts as food supplements, which do not necessarily contain the specified antioxidant contents. By exploiting the catalytic properties of gold nanoparticles, a specific and sensitive nanoparticle-based label-free electrochemical sensor was developed, where the working parameters were optimized for RAC screening of hydrosoluble plant extracts. First, electrochemical measurements (cyclic voltammetry and amperometry) were used to characterize different nanoparticle-based sensors, revealing the best performance of gold nanoparticle-based sensors, obtaining a RAC of 98% for lavender extracts. The sensing principle is based on the quenching effect of antioxidants for H(2)O(2) amperometric detection, where the decrease in electrical signal suggests an increasing antioxidant capacity. The obtained results were expressed in terms of ascorbic acid and Trolox equivalents in order to be able to correlate our results with classical methods like chemiluminescence and UV-Vis spectrophotometry, where a correlation coefficient of 0.907 was achieved, suggesting a good correlation between electrochemistry and spectrophotometry. Considering these results, the optimized gold nanoparticle-based label-free sensor can be used as a simple, rapid alternative towards classical methods for relative antioxidant capacity detection of hydrosoluble plant extracts. MDPI 2019-01-30 /pmc/articles/PMC6387368/ /pubmed/30704125 http://dx.doi.org/10.3390/s19030590 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article David, Melinda Şerban, Adrian Popa, Claudia V. Florescu, Monica A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title | A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title_full | A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title_fullStr | A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title_full_unstemmed | A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title_short | A Nanoparticle-Based Label-Free Sensor for Screening the Relative Antioxidant Capacity of Hydrosoluble Plant Extracts |
title_sort | nanoparticle-based label-free sensor for screening the relative antioxidant capacity of hydrosoluble plant extracts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387368/ https://www.ncbi.nlm.nih.gov/pubmed/30704125 http://dx.doi.org/10.3390/s19030590 |
work_keys_str_mv | AT davidmelinda ananoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT serbanadrian ananoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT popaclaudiav ananoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT florescumonica ananoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT davidmelinda nanoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT serbanadrian nanoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT popaclaudiav nanoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts AT florescumonica nanoparticlebasedlabelfreesensorforscreeningtherelativeantioxidantcapacityofhydrosolubleplantextracts |