Cargando…

Patterns of microsatellite distribution across eukaryotic genomes

BACKGROUND: Microsatellites, or Simple Sequence Repeats (SSRs), are short tandem repeats of 1–6 nt motifs present in all genomes. Emerging evidence points to their role in cellular processes and gene regulation. Despite the huge resource of genomic information currently available, SSRs have been stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Surabhi, Avvaru, Akshay Kumar, Sowpati, Divya Tej, Mishra, Rakesh K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387519/
https://www.ncbi.nlm.nih.gov/pubmed/30795733
http://dx.doi.org/10.1186/s12864-019-5516-5
Descripción
Sumario:BACKGROUND: Microsatellites, or Simple Sequence Repeats (SSRs), are short tandem repeats of 1–6 nt motifs present in all genomes. Emerging evidence points to their role in cellular processes and gene regulation. Despite the huge resource of genomic information currently available, SSRs have been studied in a limited context and compared across relatively few species. RESULTS: We have identified ~ 685 million eukaryotic microsatellites and analyzed their genomic trends across 15 taxonomic subgroups from protists to mammals. The distribution of SSRs reveals taxon-specific variations in their exonic, intronic and intergenic densities. Our analysis reveals the differences among non-related species and novel patterns uniquely demarcating closely related species. We document several repeats common across subgroups as well as rare SSRs that are excluded almost throughout evolution. We further identify species-specific signatures in pathogens like Leishmania as well as in cereal crops, Drosophila, birds and primates. We also find that distinct SSRs preferentially exist as long repeating units in different subgroups; most unicellular organisms show no length preference for any SSR class, while many SSR motifs accumulate as long repeats in complex organisms, especially in mammals. CONCLUSIONS: We present a comprehensive analysis of SSRs across taxa at an unprecedented scale. Our analysis indicates that the SSR composition of organisms with heterogeneous cell types is highly constrained, while simpler organisms such as protists, green algae and fungi show greater diversity in motif abundance, density and GC content. The microsatellite dataset generated in this work provides a large number of candidates for functional analysis and for studying their roles across the evolutionary landscape. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-019-5516-5) contains supplementary material, which is available to authorized users.