Cargando…

Long noncoding RNA LINC00707 sponges miR-370-3p to promote osteogenesis of human bone marrow-derived mesenchymal stem cells through upregulating WNT2B

BACKGROUND: Human bone marrow-derived mesenchymal stem cells (HBMSCs) are characterized by multiple differentiation potential and potent self-renewal ability, yet much remains to be elucidated on what determines these properties. Long-chain noncoding RNAs (lncRNAs) have been suggested to be involved...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Bo, Wang, Zhiping, Sun, Xiang, Chen, Jun, Zhao, Jianjiang, Qiu, Xiaoling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387535/
https://www.ncbi.nlm.nih.gov/pubmed/30795799
http://dx.doi.org/10.1186/s13287-019-1161-9
Descripción
Sumario:BACKGROUND: Human bone marrow-derived mesenchymal stem cells (HBMSCs) are characterized by multiple differentiation potential and potent self-renewal ability, yet much remains to be elucidated on what determines these properties. Long-chain noncoding RNAs (lncRNAs) have been suggested to be involved in multiple biological processes under physiological and pathological conditions, including osteogenic differentiation. METHODS: Alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin Red Staining were used for osteogenic potential detection. Western blot and qRT-PCR were used to examine the expression of LINC00707 and miR-370-3p. RNA-binding protein immunoprecipitation was used to detect the interaction between LINC00707 and RNA-induced silencing complex. Luciferase reporter assay was used to confirm the binding sites of miR-370-3p to LINC00707 and WNT2B. RESULTS: We demonstrated that LINC00707 expression was gradually increased in HBMSCs during consecutive osteogenic induction, and it could further positively regulate the osteogenic differentiation both in vitro and in vivo, whereas LINC00707 inhibition led to suppressed osteogenic differentiation. Thereafter, we inferred a predicted interaction between LINC00707 and miR-370-3p and then confirmed the direct binding sites of miR-370-3p on LINC00707. While miR-370-3p upregulation led to decreased osteogenic differentiation, LINC00707 overexpression could reverse this suppression, indicating that LINC00707 acts as a competing endogenous RNA (ceRNA) for miR-370-3p. Moreover, LINC00707 could act as a ceRNA to upregulate WNT2B via miR-370-3p inhibition. CONCLUSIONS: In conclusion, our study provides a novel lncRNA-miRNA regulatory network and a promising target to modulate the osteogenic differentiation of HBMSCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1161-9) contains supplementary material, which is available to authorized users.