Cargando…
Exploring Spatial Influence of Remotely Sensed PM(2.5) Concentration Using a Developed Deep Convolutional Neural Network Model
Currently, more and more remotely sensed data are being accumulated, and the spatial analysis methods for remotely sensed data, especially big data, are desiderating innovation. A deep convolutional network (CNN) model is proposed in this paper for exploiting the spatial influence feature in remotel...
Autores principales: | Li, Junming, Jin, Meijun, Li, Honglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388139/ https://www.ncbi.nlm.nih.gov/pubmed/30720752 http://dx.doi.org/10.3390/ijerph16030454 |
Ejemplares similares
-
Spatiotemporal Variability of Remotely Sensed PM(2.5) Concentrations in China from 1998 to 2014 Based on a Bayesian Hierarchy Model
por: Li, Junming, et al.
Publicado: (2016) -
Eigenvector Spatial Filtering Regression Modeling of Ground PM(2.5) Concentrations Using Remotely Sensed Data
por: Zhang, Jingyi, et al.
Publicado: (2018) -
Integration of Remote Sensing and Social Sensing Data in a Deep Learning Framework for Hourly Urban PM(2.5) Mapping
por: Shen, Huanfeng, et al.
Publicado: (2019) -
Fusion of Environmental Sensing on PM(2.5) and Deep Learning on Vehicle Detecting for Acquiring Roadside PM(2.5) Concentration Increments
por: Wang, Wen-Cheng Vincent, et al.
Publicado: (2020) -
A Spatial–Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM(2.5) Concentration Prediction
por: Lin, Shaofu, et al.
Publicado: (2022)