Cargando…

The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran

In this study, the spatio-temporal changes of urban heat island (UHI) in a mega city located in a semi-arid region and the relationships with normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) are appraised using Landsat TM/OLI images with the help of ENVI...

Descripción completa

Detalles Bibliográficos
Autores principales: Naserikia, Marzie, Asadi Shamsabadi, Elyas, Rafieian, Mojtaba, Leal Filho, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388183/
https://www.ncbi.nlm.nih.gov/pubmed/30678340
http://dx.doi.org/10.3390/ijerph16030313
Descripción
Sumario:In this study, the spatio-temporal changes of urban heat island (UHI) in a mega city located in a semi-arid region and the relationships with normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) are appraised using Landsat TM/OLI images with the help of ENVI and ArcGIS software. The results reveal that the relationships between NDBI, NDVI and land surface temperature (LST) varied by year in the study area and they are not suitable indices to study the land surface temperature in arid and semi-arid regions. The study also highlights the importance of weather conditions when appraising the relationship of these indices with land surface temperature. Overall, it can be concluded that LST in arid and steppe regions is most influenced by barren soil. As a result, built-up areas surrounded by soil or bituminous asphalt experience higher land surface temperatures compared to densely built-up areas. Therefore, apart from setting-up more green areas, an effective way to reduce the intensity of UHI in these regions is to develop the use of cool and smart pavements. The experiences from this paper may be of use to cities, many of which are struggling to adapt to a changing climate.