Cargando…

Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice

BACKGROUND: During aging, muscle tissue undergoes profound changes which lead to a decline in its functional and regenerative capacity. We utilized global gene expression analysis and gene set enrichment analysis to characterize gene expression changes in aging muscle satellite cells. METHOD: Gene e...

Descripción completa

Detalles Bibliográficos
Autores principales: Budai, Zsofia, Balogh, Laszlo, Sarang, Zsolt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388427/
https://www.ncbi.nlm.nih.gov/pubmed/30251615
http://dx.doi.org/10.2174/1874609811666180925104241
_version_ 1783397765532876800
author Budai, Zsofia
Balogh, Laszlo
Sarang, Zsolt
author_facet Budai, Zsofia
Balogh, Laszlo
Sarang, Zsolt
author_sort Budai, Zsofia
collection PubMed
description BACKGROUND: During aging, muscle tissue undergoes profound changes which lead to a decline in its functional and regenerative capacity. We utilized global gene expression analysis and gene set enrichment analysis to characterize gene expression changes in aging muscle satellite cells. METHOD: Gene expression data; obtained from Affymetrix Mouse Genome 430 2.0 Array, for 14 mouse muscle satellite cell samples (5 young, 4 middle-aged, and 5 aged), were retrieved from public Gene Expression Omnibus repository. List of differentially expressed genes was generated based on 0.05 multiple-testing-adjusted p-value and 2-fold FC cut-off values. Functional profiling of genes was carried out using PANTHER Classification System. RESULTS: We have found several differentially expressed genes in satellite cells derived from aged mice compared to young ones. The gene expression changes increased progressively with time, and the majority of the differentially expressed genes were upregulated during aging. While the downreg-ulated genes could not be correlated with specific biological processes the upregulated ones could be associated with muscle differentiation-, inflammation- or fibrosis-related processes. The latter two processes encompass the senescence-associated secretory phenotype for satellite cells which alters the tissue microenvironment and contributes to inflammation and fibrosis observed in aging muscle. CONCLUSION: Our analysis reveals that by altering gene expression pattern and expressing inflamma-tory mediators and extracellular matrix components, these cells can directly contribute to muscle wast-ing in aged mice
format Online
Article
Text
id pubmed-6388427
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Bentham Science Publishers
record_format MEDLINE/PubMed
spelling pubmed-63884272019-03-26 Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice Budai, Zsofia Balogh, Laszlo Sarang, Zsolt Curr Aging Sci Article BACKGROUND: During aging, muscle tissue undergoes profound changes which lead to a decline in its functional and regenerative capacity. We utilized global gene expression analysis and gene set enrichment analysis to characterize gene expression changes in aging muscle satellite cells. METHOD: Gene expression data; obtained from Affymetrix Mouse Genome 430 2.0 Array, for 14 mouse muscle satellite cell samples (5 young, 4 middle-aged, and 5 aged), were retrieved from public Gene Expression Omnibus repository. List of differentially expressed genes was generated based on 0.05 multiple-testing-adjusted p-value and 2-fold FC cut-off values. Functional profiling of genes was carried out using PANTHER Classification System. RESULTS: We have found several differentially expressed genes in satellite cells derived from aged mice compared to young ones. The gene expression changes increased progressively with time, and the majority of the differentially expressed genes were upregulated during aging. While the downreg-ulated genes could not be correlated with specific biological processes the upregulated ones could be associated with muscle differentiation-, inflammation- or fibrosis-related processes. The latter two processes encompass the senescence-associated secretory phenotype for satellite cells which alters the tissue microenvironment and contributes to inflammation and fibrosis observed in aging muscle. CONCLUSION: Our analysis reveals that by altering gene expression pattern and expressing inflamma-tory mediators and extracellular matrix components, these cells can directly contribute to muscle wast-ing in aged mice Bentham Science Publishers 2018-08 2018-08 /pmc/articles/PMC6388427/ /pubmed/30251615 http://dx.doi.org/10.2174/1874609811666180925104241 Text en © 2018 Bentham Science Publishers https://creativecommons.org/licenses/by-nc/4.0/legalcode This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
spellingShingle Article
Budai, Zsofia
Balogh, Laszlo
Sarang, Zsolt
Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title_full Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title_fullStr Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title_full_unstemmed Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title_short Altered Gene Expression of Muscle Satellite Cells Contributes to Age-related Sarcopenia in Mice
title_sort altered gene expression of muscle satellite cells contributes to age-related sarcopenia in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388427/
https://www.ncbi.nlm.nih.gov/pubmed/30251615
http://dx.doi.org/10.2174/1874609811666180925104241
work_keys_str_mv AT budaizsofia alteredgeneexpressionofmusclesatellitecellscontributestoagerelatedsarcopeniainmice
AT baloghlaszlo alteredgeneexpressionofmusclesatellitecellscontributestoagerelatedsarcopeniainmice
AT sarangzsolt alteredgeneexpressionofmusclesatellitecellscontributestoagerelatedsarcopeniainmice