Cargando…
A comparison of graph- and kernel-based –omics data integration algorithms for classifying complex traits
BACKGROUND: High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provid...
Autores principales: | Yan, Kang K., Zhao, Hongyu, Pang, Herbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389230/ https://www.ncbi.nlm.nih.gov/pubmed/29212468 http://dx.doi.org/10.1186/s12859-017-1982-4 |
Ejemplares similares
-
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data
por: Tao, Mingxin, et al.
Publicado: (2019) -
GraphOmics: an interactive platform to explore and integrate multi-omics data
por: Wandy, Joe, et al.
Publicado: (2021) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
(Hyper)graph Kernels over Simplicial Complexes
por: Martino, Alessio, et al.
Publicado: (2020) -
Multiple kernel learning for integrative consensus clustering of omic datasets
por: Cabassi, Alessandra, et al.
Publicado: (2020)