Cargando…
Assimilating MODIS data-derived minimum input data set and water stress factors into CERES-Maize model improves regional corn yield predictions
Crop growth models and remote sensing are useful tools for predicting crop growth and yield, but each tool has inherent drawbacks when predicting crop growth and yield at a regional scale. To improve the accuracy and precision of regional corn yield predictions, a simple approach for assimilating Mo...
Autores principales: | Ban, Ho-Young, Ahn, Joong-Bae, Lee, Byun-Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389283/ https://www.ncbi.nlm.nih.gov/pubmed/30802254 http://dx.doi.org/10.1371/journal.pone.0211874 |
Ejemplares similares
-
Estimation of Winter Wheat Yield in Arid and Semiarid Regions Based on Assimilated Multi-Source Sentinel Data and the CERES-Wheat Model
por: Liu, Zhengchun, et al.
Publicado: (2021) -
Options for calibrating CERES-maize genotype specific parameters under data-scarce environments
por: Adnan, A. A., et al.
Publicado: (2019) -
A method for estimating yield of maize inbred lines by assimilating WOFOST model with Sentinel-2 satellite data
por: Liu, Junyi, et al.
Publicado: (2023) -
Assessment of the impact of crop management strategies on the yield of early-maturing maize varieties in the drylands of Niger Republic: Application of the DSSAT-CERES-Maize model
por: Kamara, A.Y., et al.
Publicado: (2023) -
In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt
por: Joshi, Vijaya R., et al.
Publicado: (2020)