Cargando…
Illustration of measurement error models for reducing biases in nutrition and obesity research using 2D body composition data
OBJECTIVE: To illustrate the use and value of measurement error models for reducing biases when evaluating associations between body fat and having type 2 diabetes (T2D) or being physically active. METHODS: Logistic regression models were used to evaluate T2D and physical activity among adults aged...
Autores principales: | Murillo, Anarina L., Affuso, Olivia, Peterson, Courtney M., Li, Peng, Wiener, Howard W., Tekwe, Carmen D., Allison, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389422/ https://www.ncbi.nlm.nih.gov/pubmed/30672124 http://dx.doi.org/10.1002/oby.22387 |
Ejemplares similares
-
A Systematic Scoping Review of Surgically Manipulated Adipose Tissue and the Regulation of Energetics and Body Fat in Animals
por: Murillo, Anarina L., et al.
Publicado: (2019) -
A method for measuring human body composition using digital images
por: Affuso, Olivia, et al.
Publicado: (2018) -
Errors in the implementation, analysis, and reporting of randomization within obesity and nutrition research: a guide to their avoidance
por: Vorland, Colby J., et al.
Publicado: (2021) -
A function‐based approach to model the measurement error in wearable devices
por: Jadhav, Sneha, et al.
Publicado: (2022) -
The Geographic Distribution of Obesity in the US and the Potential Regional Differences in Misreporting of Obesity
por: Le, Anh, et al.
Publicado: (2013)