Cargando…

Nitidine Chloride Inhibits SIN1 Expression in Osteosarcoma Cells

Nitidine chloride (NC) has been demonstrated to exert a tumor-suppressive function in various types of human cancers. However, the detailed mechanism of NC-mediated anti-tumor effects remains elusive. It has been reported that SIN1, a component of mTORC2 (mammalian target of rapamycin complex C2), p...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hui, Cao, Tong, Zhang, Xiaoqing, Shi, Ying, Zhang, Qing, Chai, Shuo, Yu, Li, Jin, Guoxi, Ma, Jia, Wang, Peter, Li, Yuyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389778/
https://www.ncbi.nlm.nih.gov/pubmed/30847386
http://dx.doi.org/10.1016/j.omto.2019.01.005
Descripción
Sumario:Nitidine chloride (NC) has been demonstrated to exert a tumor-suppressive function in various types of human cancers. However, the detailed mechanism of NC-mediated anti-tumor effects remains elusive. It has been reported that SIN1, a component of mTORC2 (mammalian target of rapamycin complex C2), plays an oncogenic role in a variety of human cancers. Therefore, the inhibition of SIN1 could be useful for the treatment of human cancers. In this study, we explored whether NC triggered an anti-cancer function via the inhibition of SIN1 in osteosarcoma (OS) cells. An MTT assay was performed to measure the effect of NC on the cell growth of osteosarcoma cells, and flow cytometry was used to detect the apoptotic rate of the cells after NC treatment. The expression of SIN1 was detected by western blotting. Wound-healing assay and Transwell chamber invasion assay were conducted to analyze the motility of osteosarcoma cells following NC exposure. We found that exposure to NC led to the inhibition of cell growth, migration, and invasion and the induction of apoptosis. Mechanistically, we found that NC inhibited the expression of SIN1 in osteosarcoma cells. Overexpression of SIN1 abrogated the inhibition of cell growth and motility induced by NC in osteosarcoma cells. Our results indicate that NC exhibits its tumor-suppressive activity via the inhibition of SIN1 in osteosarcoma cells, suggesting that NC could be a potential inhibitor of SIN1 in osteosarcoma.