Cargando…
Increased neuronal signatures of targeted memory reactivation during slow-wave up states
It is assumed that slow oscillatory up-states represent crucial time windows for memory reactivation and consolidation during sleep. We tested this assumption by utilizing closed-loop targeted memory reactivation: Participants were re-exposed to prior learned foreign vocabulary during up- and down-s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389952/ https://www.ncbi.nlm.nih.gov/pubmed/30804371 http://dx.doi.org/10.1038/s41598-019-39178-2 |
Sumario: | It is assumed that slow oscillatory up-states represent crucial time windows for memory reactivation and consolidation during sleep. We tested this assumption by utilizing closed-loop targeted memory reactivation: Participants were re-exposed to prior learned foreign vocabulary during up- and down-states of slow oscillations. While presenting memory cues during slow oscillatory up-states improved recall performance, down-state cueing did not result in a clear behavioral benefit. Still, no robust behavioral benefit of up- as compared to down-state cueing was observable. At the electrophysiological level however, successful memory reactivation during up-states was associated with a characteristic power increase in the theta and sleep spindle band. No oscillatory changes were observable for down-state cues. Our findings provide experimental support for the assumption that slow oscillatory up-states may represent privileged time windows for memory reactivation, while the interplay of slow oscillations, theta and sleep spindle activity promotes successful memory consolidation during sleep. |
---|