Cargando…

Artificial intelligence for precision oncology: beyond patient stratification

The data-driven identification of disease states and treatment options is a crucial challenge for precision oncology. Artificial intelligence (AI) offers unique opportunities for enhancing such predictive capabilities in the lab and the clinic. AI, including its best-known branch of research, machin...

Descripción completa

Detalles Bibliográficos
Autor principal: Azuaje, Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389974/
https://www.ncbi.nlm.nih.gov/pubmed/30820462
http://dx.doi.org/10.1038/s41698-019-0078-1
Descripción
Sumario:The data-driven identification of disease states and treatment options is a crucial challenge for precision oncology. Artificial intelligence (AI) offers unique opportunities for enhancing such predictive capabilities in the lab and the clinic. AI, including its best-known branch of research, machine learning, has significant potential to enable precision oncology well beyond relatively well-known pattern recognition applications, such as the supervised classification of single-source omics or imaging datasets. This perspective highlights key advances and challenges in that direction. Furthermore, it argues that AI’s scope and depth of research need to be expanded to achieve ground-breaking progress in precision oncology.