Cargando…
CaDrA: A Computational Framework for Performing Candidate Driver Analyses Using Genomic Features
The identification of genetic alteration combinations as drivers of a given phenotypic outcome, such as drug sensitivity, gene or protein expression, and pathway activity, is a challenging task that is essential to gaining new biological insights and to discovering therapeutic targets. Existing meth...
Autores principales: | Kartha, Vinay K., Sebastiani, Paola, Kern, Joseph G., Zhang, Liye, Varelas, Xaralabos, Monti, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390206/ https://www.ncbi.nlm.nih.gov/pubmed/30838036 http://dx.doi.org/10.3389/fgene.2019.00121 |
Ejemplares similares
-
Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis
por: Li, Amy, et al.
Publicado: (2019) -
Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors
por: Zhang, Liye, et al.
Publicado: (2016) -
Structure learning for gene regulatory networks
por: Federico, Anthony, et al.
Publicado: (2023) -
Cell Type Diversity Statistic: An Entropy-Based Metric to Compare Overall Cell Type Composition Across Samples
por: Karagiannis, Tanya T, et al.
Publicado: (2022) -
Bayesian differential analysis of cell type proportions: opinion
por: Karagiannis, Tanya T., et al.
Publicado: (2023)