Cargando…
Exploiting nanoscale effects in phase change memories
The market launch of Intel’s 3D XPoint™ proves phase change technology has grown mature. Besides storing information in a fast and non-volatile way, phase change memories (PCMs) may facilitate neuromorphic and in-memory computing. In order to establish PCM as a lasting element of the electronics eco...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390696/ https://www.ncbi.nlm.nih.gov/pubmed/30402620 http://dx.doi.org/10.1039/c8fd00119g |
_version_ | 1783398189845446656 |
---|---|
author | Kersting, Benedikt Salinga, Martin |
author_facet | Kersting, Benedikt Salinga, Martin |
author_sort | Kersting, Benedikt |
collection | PubMed |
description | The market launch of Intel’s 3D XPoint™ proves phase change technology has grown mature. Besides storing information in a fast and non-volatile way, phase change memories (PCMs) may facilitate neuromorphic and in-memory computing. In order to establish PCM as a lasting element of the electronics ecosystem, scalability to future technology nodes needs to be assured. Continued miniaturization of PCM devices is not only prescribed in order to achieve memories with higher data density and neuromorphic hardware capable of processing larger amounts of information. Smaller PCM elements are also incentivized by the prospect of increased power efficiency per operation as less material needs to be heated up for switching. For this reason, a good understanding of the effects of confinement on phase change materials is crucial. Here we describe how miniaturization increases the importance of interface effects and we show how in consequence the crystallization kinetics of phase change materials, when confined into nanometer sized structures, can change significantly. Based on this analysis, the implications of such nanoscale effects are discussed and possible ways of exploiting them proposed. |
format | Online Article Text |
id | pubmed-6390696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63906962019-03-15 Exploiting nanoscale effects in phase change memories Kersting, Benedikt Salinga, Martin Faraday Discuss Chemistry The market launch of Intel’s 3D XPoint™ proves phase change technology has grown mature. Besides storing information in a fast and non-volatile way, phase change memories (PCMs) may facilitate neuromorphic and in-memory computing. In order to establish PCM as a lasting element of the electronics ecosystem, scalability to future technology nodes needs to be assured. Continued miniaturization of PCM devices is not only prescribed in order to achieve memories with higher data density and neuromorphic hardware capable of processing larger amounts of information. Smaller PCM elements are also incentivized by the prospect of increased power efficiency per operation as less material needs to be heated up for switching. For this reason, a good understanding of the effects of confinement on phase change materials is crucial. Here we describe how miniaturization increases the importance of interface effects and we show how in consequence the crystallization kinetics of phase change materials, when confined into nanometer sized structures, can change significantly. Based on this analysis, the implications of such nanoscale effects are discussed and possible ways of exploiting them proposed. Royal Society of Chemistry 2019-02-01 2018-11-07 /pmc/articles/PMC6390696/ /pubmed/30402620 http://dx.doi.org/10.1039/c8fd00119g Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Kersting, Benedikt Salinga, Martin Exploiting nanoscale effects in phase change memories |
title | Exploiting nanoscale effects in phase change memories |
title_full | Exploiting nanoscale effects in phase change memories |
title_fullStr | Exploiting nanoscale effects in phase change memories |
title_full_unstemmed | Exploiting nanoscale effects in phase change memories |
title_short | Exploiting nanoscale effects in phase change memories |
title_sort | exploiting nanoscale effects in phase change memories |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390696/ https://www.ncbi.nlm.nih.gov/pubmed/30402620 http://dx.doi.org/10.1039/c8fd00119g |
work_keys_str_mv | AT kerstingbenedikt exploitingnanoscaleeffectsinphasechangememories AT salingamartin exploitingnanoscaleeffectsinphasechangememories |