Cargando…
Uncertainty Quantification for Flow and Transport in Highly Heterogeneous Porous Media Based on Simultaneous Stochastic Model Dimensionality Reduction
Groundwater flow models are usually subject to uncertainty as a consequence of the random representation of the conductivity field. In this paper, we use a Gaussian process model based on the simultaneous dimension reduction in the conductivity input and flow field output spaces in order quantify th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390710/ https://www.ncbi.nlm.nih.gov/pubmed/30872877 http://dx.doi.org/10.1007/s11242-018-1114-2 |
Sumario: | Groundwater flow models are usually subject to uncertainty as a consequence of the random representation of the conductivity field. In this paper, we use a Gaussian process model based on the simultaneous dimension reduction in the conductivity input and flow field output spaces in order quantify the uncertainty in a model describing the flow of an incompressible liquid in a random heterogeneous porous medium. We show how to significantly reduce the dimensionality of the high-dimensional input and output spaces while retaining the qualitative features of the original model, and secondly how to build a surrogate model for solving the reduced-order stochastic model. A Monte Carlo uncertainty analysis on the full-order model is used for validation of the surrogate model. |
---|