Cargando…
Uncertainty Quantification for Flow and Transport in Highly Heterogeneous Porous Media Based on Simultaneous Stochastic Model Dimensionality Reduction
Groundwater flow models are usually subject to uncertainty as a consequence of the random representation of the conductivity field. In this paper, we use a Gaussian process model based on the simultaneous dimension reduction in the conductivity input and flow field output spaces in order quantify th...
Autores principales: | Crevillén-García, D., Leung, P. K., Rodchanarowan, A., Shah, A. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390710/ https://www.ncbi.nlm.nih.gov/pubmed/30872877 http://dx.doi.org/10.1007/s11242-018-1114-2 |
Ejemplares similares
-
Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media
por: Crevillén-García, D., et al.
Publicado: (2017) -
Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces
por: Crevillén-García, D.
Publicado: (2018) -
Uncertainty quantification and stochastic modeling with Matlab
por: Souza de Cursi, Eduardo, et al.
Publicado: (2015) -
Stochastic Systems: Uncertainty Quantification and Propagation
por: Grigoriu, Mircea
Publicado: (2012) -
Stochastic porous media equations
por: Barbu, Viorel, et al.
Publicado: (2016)