Cargando…
A Surrogate Modelling Approach Based on Nonlinear Dimension Reduction for Uncertainty Quantification in Groundwater Flow Models
In this paper, we develop a surrogate modelling approach for capturing the output field (e.g. the pressure head) from groundwater flow models involving a stochastic input field (e.g. the hydraulic conductivity). We use a Karhunen–Loève expansion for a log-normally distributed input field and apply m...
Autores principales: | Gadd, C., Xing, W., Nezhad, M. Mousavi, Shah, A. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390720/ https://www.ncbi.nlm.nih.gov/pubmed/30872876 http://dx.doi.org/10.1007/s11242-018-1065-7 |
Ejemplares similares
-
Uncertainty quantification in cerebral circulation simulations focusing on the collateral flow: Surrogate model approach with machine learning
por: Yuhn, Changyoung, et al.
Publicado: (2022) -
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
por: Ye, Dongwei, et al.
Publicado: (2022) -
Uncertainty Quantification for Flow and Transport in Highly Heterogeneous Porous Media Based on Simultaneous Stochastic Model Dimensionality Reduction
por: Crevillén-García, D., et al.
Publicado: (2018) -
Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization
por: Renardy, Marissa, et al.
Publicado: (2018) -
Reduction of dimension for nonlinear dynamical systems
por: Harrington, Heather A., et al.
Publicado: (2016)