Cargando…
Machine learning uncertainties with adversarial neural networks
Machine Learning is a powerful tool to reveal and exploit correlations in a multi-dimensional parameter space. Making predictions from such correlations is a highly non-trivial task, in particular when the details of the underlying dynamics of a theoretical model are not fully understood. Using adve...
Autores principales: | Englert, Christoph, Galler, Peter, Harris, Philip, Spannowsky, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390898/ https://www.ncbi.nlm.nih.gov/pubmed/30872963 http://dx.doi.org/10.1140/epjc/s10052-018-6511-8 |
Ejemplares similares
-
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
Jet-associated resonance spectroscopy
por: Englert, Christoph, et al.
Publicado: (2017) -
[Formula: see text] production at 100 TeV
por: Banerjee, Shankha, et al.
Publicado: (2018) -
Unitarity-controlled resonances after Higgs discovery
por: Englert, Christoph, et al.
Publicado: (2015) -
Top quark electroweak couplings at future lepton colliders
por: Englert, Christoph, et al.
Publicado: (2017)