Cargando…
On the geometry of geodesics in discrete optimal transport
We consider the space of probability measures on a discrete set [Formula: see text] , endowed with a dynamical optimal transport metric. Given two probability measures supported in a subset [Formula: see text] , it is natural to ask whether they can be connected by a constant speed geodesic with sup...
Autores principales: | Erbar, Matthias, Maas, Jan, Wirth, Melchior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390900/ https://www.ncbi.nlm.nih.gov/pubmed/30872900 http://dx.doi.org/10.1007/s00526-018-1456-1 |
Ejemplares similares
-
The geometry of geodesics /
por: Busemann, Herbert, 1905-1994
Publicado: (1955) -
The geometry of geodesics
por: Busemann, Herbert
Publicado: (1955) -
Geodesic motion in Euclidean Schwarzschild geometry
por: Battista, Emmanuele, et al.
Publicado: (2022) -
Tour of subriemannian geometries, their geodesics and applications
por: Montgomery, Richard
Publicado: (2014) -
GEODESIC SINKHORN FOR FAST AND ACCURATE OPTIMAL TRANSPORT ON MANIFOLDS
por: Huguet, Guillaume, et al.
Publicado: (2023)