Cargando…

A new implementation for online calculation of manipulator Jacobian

This paper describes a new implementation for calculating Jacobian and its time derivative for robot manipulators in real-time. The estimation of Jacobian is the key in the real-time implementation of kinematics and dynamics of complex planar or spatial robots with fixed as well as floating axes in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chembrammel, Pramod, Kesavadas, Thenkurussi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391062/
https://www.ncbi.nlm.nih.gov/pubmed/30807576
http://dx.doi.org/10.1371/journal.pone.0212018
Descripción
Sumario:This paper describes a new implementation for calculating Jacobian and its time derivative for robot manipulators in real-time. The estimation of Jacobian is the key in the real-time implementation of kinematics and dynamics of complex planar or spatial robots with fixed as well as floating axes in which the Jacobian form changes with the structure. The proposed method is suitable for such implementations. The new method is based on matrix differential calculus. Unlike the conventional methods, which are based on screw theory, the Jacobian calculation in the proposed approach has been reduced to the inner product of two matrices. Use of the new method to derive linear and angular velocity parts of Jacobian and its time derivative is described in detail. We have demonstrated the method using a two-DOF spatial robot and a hyper-redundant spatial robot.