Cargando…
Defining Optimal Soybean Sowing Dates across the US
Global crop demand is expected to increase by 60–110% by 2050. Climate change has already affected crop yields in some countries, and these effects are expected to continue. Identification of weather-related yield-limiting conditions and development of strategies for agricultural adaptation to clima...
Autores principales: | Mourtzinis, Spyridon, Specht, James E., Conley, Shawn P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391372/ https://www.ncbi.nlm.nih.gov/pubmed/30808953 http://dx.doi.org/10.1038/s41598-019-38971-3 |
Ejemplares similares
-
Advancing agricultural research using machine learning algorithms
por: Mourtzinis, Spyridon, et al.
Publicado: (2021) -
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
por: Shah, Denis A., et al.
Publicado: (2021) -
Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers
por: Mourtzinis, Spyridon, et al.
Publicado: (2019) -
Optimizing sowing date for peanut genotypes in arid and semi-arid subtropical regions
por: Ijaz, Muhammad, et al.
Publicado: (2021) -
Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield
por: Mourtzinis, Spyridon, et al.
Publicado: (2016)