Cargando…
Bub1 kinase- and H2A phosphorylation-independent regulation of Shugoshin proteins under glucose-restricted conditions
Shugoshin family proteins are involved in various aspects of chromatin regulations, such as chromosome segregation, chromatin structure, and gene expression. In growing yeast and mammalian cells, C-terminal phosphorylation of histone H2A by Bub1 kinase is essential for the localization of Shugoshin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391426/ https://www.ncbi.nlm.nih.gov/pubmed/30809004 http://dx.doi.org/10.1038/s41598-019-39479-6 |
Sumario: | Shugoshin family proteins are involved in various aspects of chromatin regulations, such as chromosome segregation, chromatin structure, and gene expression. In growing yeast and mammalian cells, C-terminal phosphorylation of histone H2A by Bub1 kinase is essential for the localization of Shugoshin proteins to chromatin. Here, we show that in stationary-phase cells, Bub1-mediated H2A phosphorylation is not necessary for chromatin localization of the Shugoshin paralog Sgo2 in Schizosaccharomyces pombe, or for Sgo2-dependent suppression of gene expression in subtelomeric regions. The conserved C-terminal basic domain of Sgo2, which directly binds with phosphorylated H2A, is also dispensable for the localization of Sgo2 to chromatin at stationary phase. Instead, we found that the conserved N-terminal coiled-coil domain and the uncharacterized medial region of Sgo2 are required for Bub1-independent localization of Sgo2. Moreover, Set2-mediated H3K36 methylation was important for the regulation. Intriguingly, the chromatin localization of Sgo2 in the absence of Bub1 was also observed when cells were grown in low-glucose medium. These findings suggest a novel mechanism between nutrient availability and regulation of chromatin by Shugoshin proteins. |
---|