Cargando…
Deep learning in head & neck cancer outcome prediction
Traditional radiomics involves the extraction of quantitative texture features from medical images in an attempt to determine correlations with clinical endpoints. We hypothesize that convolutional neural networks (CNNs) could enhance the performance of traditional radiomics, by detecting image patt...
Autores principales: | Diamant, André, Chatterjee, Avishek, Vallières, Martin, Shenouda, George, Seuntjens, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391436/ https://www.ncbi.nlm.nih.gov/pubmed/30809047 http://dx.doi.org/10.1038/s41598-019-39206-1 |
Ejemplares similares
-
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer
por: Vallières, Martin, et al.
Publicado: (2017) -
Radiomics in Head and Neck Cancer Outcome Predictions
por: Gonçalves, Maria, et al.
Publicado: (2022) -
A retrospective study of head and neck re-irradiation for patients with recurrent or second primary head and neck cancer: the McGill University experience
por: Al-Wassia, Rolina, et al.
Publicado: (2015) -
Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
por: Huynh, Bao Ngoc, et al.
Publicado: (2023) -
Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics
por: Keek, Simon A., et al.
Publicado: (2022)