Cargando…
Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces
Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO(2) does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles,...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391491/ https://www.ncbi.nlm.nih.gov/pubmed/30808867 http://dx.doi.org/10.1038/s41467-019-08824-8 |
_version_ | 1783398320484384768 |
---|---|
author | Esrafilzadeh, Dorna Zavabeti, Ali Jalili, Rouhollah Atkin, Paul Choi, Jaecheol Carey, Benjamin J. Brkljača, Robert O’Mullane, Anthony P. Dickey, Michael D. Officer, David L. MacFarlane, Douglas R. Daeneke, Torben Kalantar-Zadeh, Kourosh |
author_facet | Esrafilzadeh, Dorna Zavabeti, Ali Jalili, Rouhollah Atkin, Paul Choi, Jaecheol Carey, Benjamin J. Brkljača, Robert O’Mullane, Anthony P. Dickey, Michael D. Officer, David L. MacFarlane, Douglas R. Daeneke, Torben Kalantar-Zadeh, Kourosh |
author_sort | Esrafilzadeh, Dorna |
collection | PubMed |
description | Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO(2) does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles, which facilitates the electrochemical reduction of CO(2) to layered solid carbonaceous species, at a low onset potential of −310 mV vs CO(2)/C. We exploited the formation of a cerium oxide catalyst at the liquid metal/electrolyte interface, which together with cerium nanoparticles, promoted the room temperature reduction of CO(2). Due to the inhibition of van der Waals adhesion at the liquid interface, the electrode was remarkably resistant to deactivation via coking caused by solid carbonaceous species. The as-produced solid carbonaceous materials could be utilised for the fabrication of high-performance capacitor electrodes. Overall, this liquid metal enabled electrocatalytic process at room temperature may result in a viable negative emission technology. |
format | Online Article Text |
id | pubmed-6391491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63914912019-02-28 Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces Esrafilzadeh, Dorna Zavabeti, Ali Jalili, Rouhollah Atkin, Paul Choi, Jaecheol Carey, Benjamin J. Brkljača, Robert O’Mullane, Anthony P. Dickey, Michael D. Officer, David L. MacFarlane, Douglas R. Daeneke, Torben Kalantar-Zadeh, Kourosh Nat Commun Article Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO(2) does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles, which facilitates the electrochemical reduction of CO(2) to layered solid carbonaceous species, at a low onset potential of −310 mV vs CO(2)/C. We exploited the formation of a cerium oxide catalyst at the liquid metal/electrolyte interface, which together with cerium nanoparticles, promoted the room temperature reduction of CO(2). Due to the inhibition of van der Waals adhesion at the liquid interface, the electrode was remarkably resistant to deactivation via coking caused by solid carbonaceous species. The as-produced solid carbonaceous materials could be utilised for the fabrication of high-performance capacitor electrodes. Overall, this liquid metal enabled electrocatalytic process at room temperature may result in a viable negative emission technology. Nature Publishing Group UK 2019-02-26 /pmc/articles/PMC6391491/ /pubmed/30808867 http://dx.doi.org/10.1038/s41467-019-08824-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Esrafilzadeh, Dorna Zavabeti, Ali Jalili, Rouhollah Atkin, Paul Choi, Jaecheol Carey, Benjamin J. Brkljača, Robert O’Mullane, Anthony P. Dickey, Michael D. Officer, David L. MacFarlane, Douglas R. Daeneke, Torben Kalantar-Zadeh, Kourosh Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title | Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title_full | Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title_fullStr | Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title_full_unstemmed | Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title_short | Room temperature CO(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
title_sort | room temperature co(2) reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391491/ https://www.ncbi.nlm.nih.gov/pubmed/30808867 http://dx.doi.org/10.1038/s41467-019-08824-8 |
work_keys_str_mv | AT esrafilzadehdorna roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT zavabetiali roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT jalilirouhollah roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT atkinpaul roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT choijaecheol roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT careybenjaminj roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT brkljacarobert roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT omullaneanthonyp roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT dickeymichaeld roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT officerdavidl roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT macfarlanedouglasr roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT daeneketorben roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces AT kalantarzadehkourosh roomtemperatureco2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces |