Cargando…
Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions
The strain‐promoted alkyne‐azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions wi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391941/ https://www.ncbi.nlm.nih.gov/pubmed/30347481 http://dx.doi.org/10.1002/chem.201805215 |
_version_ | 1783398395490074624 |
---|---|
author | Svatunek, Dennis Houszka, Nicole Hamlin, Trevor A. Bickelhaupt, F. Matthias Mikula, Hannes |
author_facet | Svatunek, Dennis Houszka, Nicole Hamlin, Trevor A. Bickelhaupt, F. Matthias Mikula, Hannes |
author_sort | Svatunek, Dennis |
collection | PubMed |
description | The strain‐promoted alkyne‐azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions with azides. However, only a few studies examined the influence of structurally diverse azides on reaction kinetics. Herein, we report our investigations of the reactivity of primary, secondary, and tertiary azides with the cyclooctynes BCN and ADIBO applying experimental and computational methods. All azides show similar reaction rates with the sterically non‐demanding cyclooctyne BCN. However, due to the increased steric demand of the dibenzocyclooctyne ADIBO, the reactivity of tertiary azides drops by several orders of magnitude in comparison to primary and secondary azides. We show that this chemoselective behavior of tertiary azides can be exploited to achieve semiorthogonal dual‐labeling without the need for any catalyst using SPAAC exclusively. |
format | Online Article Text |
id | pubmed-6391941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63919412019-03-07 Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions Svatunek, Dennis Houszka, Nicole Hamlin, Trevor A. Bickelhaupt, F. Matthias Mikula, Hannes Chemistry Communications The strain‐promoted alkyne‐azide cycloaddition (SPAAC) is the most commonly employed bioorthogonal reaction with applications in a broad range of fields. Over the years, several different cyclooctyne derivatives have been developed and investigated in regard to their reactivity in SPAAC reactions with azides. However, only a few studies examined the influence of structurally diverse azides on reaction kinetics. Herein, we report our investigations of the reactivity of primary, secondary, and tertiary azides with the cyclooctynes BCN and ADIBO applying experimental and computational methods. All azides show similar reaction rates with the sterically non‐demanding cyclooctyne BCN. However, due to the increased steric demand of the dibenzocyclooctyne ADIBO, the reactivity of tertiary azides drops by several orders of magnitude in comparison to primary and secondary azides. We show that this chemoselective behavior of tertiary azides can be exploited to achieve semiorthogonal dual‐labeling without the need for any catalyst using SPAAC exclusively. John Wiley and Sons Inc. 2018-12-06 2019-01-14 /pmc/articles/PMC6391941/ /pubmed/30347481 http://dx.doi.org/10.1002/chem.201805215 Text en © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Communications Svatunek, Dennis Houszka, Nicole Hamlin, Trevor A. Bickelhaupt, F. Matthias Mikula, Hannes Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title | Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title_full | Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title_fullStr | Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title_full_unstemmed | Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title_short | Chemoselectivity of Tertiary Azides in Strain‐Promoted Alkyne‐Azide Cycloadditions |
title_sort | chemoselectivity of tertiary azides in strain‐promoted alkyne‐azide cycloadditions |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391941/ https://www.ncbi.nlm.nih.gov/pubmed/30347481 http://dx.doi.org/10.1002/chem.201805215 |
work_keys_str_mv | AT svatunekdennis chemoselectivityoftertiaryazidesinstrainpromotedalkyneazidecycloadditions AT houszkanicole chemoselectivityoftertiaryazidesinstrainpromotedalkyneazidecycloadditions AT hamlintrevora chemoselectivityoftertiaryazidesinstrainpromotedalkyneazidecycloadditions AT bickelhauptfmatthias chemoselectivityoftertiaryazidesinstrainpromotedalkyneazidecycloadditions AT mikulahannes chemoselectivityoftertiaryazidesinstrainpromotedalkyneazidecycloadditions |