Cargando…

Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling

Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zigui, Hui, Pak Chun, Hui, Mamie, Yeoh, Yun Kit, Wong, Po Yee, Chan, Martin C. W., Wong, Martin C. S., Ng, Siew C., Chan, Francis K. L., Chan, Paul K. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392095/
https://www.ncbi.nlm.nih.gov/pubmed/30834331
http://dx.doi.org/10.1128/mSystems.00271-18
_version_ 1783398409743368192
author Chen, Zigui
Hui, Pak Chun
Hui, Mamie
Yeoh, Yun Kit
Wong, Po Yee
Chan, Martin C. W.
Wong, Martin C. S.
Ng, Siew C.
Chan, Francis K. L.
Chan, Paul K. S.
author_facet Chen, Zigui
Hui, Pak Chun
Hui, Mamie
Yeoh, Yun Kit
Wong, Po Yee
Chan, Martin C. W.
Wong, Martin C. S.
Ng, Siew C.
Chan, Francis K. L.
Chan, Paul K. S.
author_sort Chen, Zigui
collection PubMed
description Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutions (Norgen, OMNI, RNAlater, CURNA, HEMA, and Shield) for these aspects. Following storage of human stool samples with these preservatives at room temperature for 7 days, three hypervariable regions of the bacterial 16S rRNA gene (V1-V2, V3-V4, and V4) were amplicon sequenced. We found that samples collected in two preservatives, Norgen and OMNI, showed the least shift in community composition relative to −80°C standards compared with other storage conditions, and both efficiently inhibited the growth of aerobic and anaerobic bacteria. RNAlater did not prevent bacterial activity and exhibited relatively larger community shift. Although the effect of preservation solution was small compared to intersubject variation, notable changes in microbiota composition were observed, which could create biases in downstream data analysis. When community profiles inferred from different 16S rRNA gene hypervariable regions were compared, we found differential sensitivity of primer sets in identifying overall microbial community and certain bacterial taxa. For example, reads generated by the V4 primer pair showed a higher alpha diversity of the gut microbial community. The degenerate 27f-YM primer failed to detect the majority of Bifidobacteriales. Our data indicate that choice of preservation solution and 16S rRNA gene primer pair are critical determinants affecting gut microbiota profiling. IMPORTANCE Large-scale human microbiota studies require specimens collected from multiple sites and/or time points to maximize detection of the small effects in microbe-host interactions. However, batch biases caused by experimental protocols, such as sample collection, massively parallel sequencing, and bioinformatics analyses, remain critical and should be minimized. This work evaluated the effects of preservation solutions and bacterial 16S rRNA gene primer pairs in revealing human gut microbiota composition. Since notable changes in detecting bacterial composition and abundance were observed among choice of preservatives and primer pairs, a consistent methodology is essential in minimizing their effects to facilitate comparisons between data sets.
format Online
Article
Text
id pubmed-6392095
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-63920952019-03-04 Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling Chen, Zigui Hui, Pak Chun Hui, Mamie Yeoh, Yun Kit Wong, Po Yee Chan, Martin C. W. Wong, Martin C. S. Ng, Siew C. Chan, Francis K. L. Chan, Paul K. S. mSystems Methods and Protocols Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutions (Norgen, OMNI, RNAlater, CURNA, HEMA, and Shield) for these aspects. Following storage of human stool samples with these preservatives at room temperature for 7 days, three hypervariable regions of the bacterial 16S rRNA gene (V1-V2, V3-V4, and V4) were amplicon sequenced. We found that samples collected in two preservatives, Norgen and OMNI, showed the least shift in community composition relative to −80°C standards compared with other storage conditions, and both efficiently inhibited the growth of aerobic and anaerobic bacteria. RNAlater did not prevent bacterial activity and exhibited relatively larger community shift. Although the effect of preservation solution was small compared to intersubject variation, notable changes in microbiota composition were observed, which could create biases in downstream data analysis. When community profiles inferred from different 16S rRNA gene hypervariable regions were compared, we found differential sensitivity of primer sets in identifying overall microbial community and certain bacterial taxa. For example, reads generated by the V4 primer pair showed a higher alpha diversity of the gut microbial community. The degenerate 27f-YM primer failed to detect the majority of Bifidobacteriales. Our data indicate that choice of preservation solution and 16S rRNA gene primer pair are critical determinants affecting gut microbiota profiling. IMPORTANCE Large-scale human microbiota studies require specimens collected from multiple sites and/or time points to maximize detection of the small effects in microbe-host interactions. However, batch biases caused by experimental protocols, such as sample collection, massively parallel sequencing, and bioinformatics analyses, remain critical and should be minimized. This work evaluated the effects of preservation solutions and bacterial 16S rRNA gene primer pairs in revealing human gut microbiota composition. Since notable changes in detecting bacterial composition and abundance were observed among choice of preservatives and primer pairs, a consistent methodology is essential in minimizing their effects to facilitate comparisons between data sets. American Society for Microbiology 2019-02-26 /pmc/articles/PMC6392095/ /pubmed/30834331 http://dx.doi.org/10.1128/mSystems.00271-18 Text en Copyright © 2019 Chen et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods and Protocols
Chen, Zigui
Hui, Pak Chun
Hui, Mamie
Yeoh, Yun Kit
Wong, Po Yee
Chan, Martin C. W.
Wong, Martin C. S.
Ng, Siew C.
Chan, Francis K. L.
Chan, Paul K. S.
Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title_full Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title_fullStr Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title_full_unstemmed Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title_short Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling
title_sort impact of preservation method and 16s rrna hypervariable region on gut microbiota profiling
topic Methods and Protocols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392095/
https://www.ncbi.nlm.nih.gov/pubmed/30834331
http://dx.doi.org/10.1128/mSystems.00271-18
work_keys_str_mv AT chenzigui impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT huipakchun impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT huimamie impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT yeohyunkit impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT wongpoyee impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT chanmartincw impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT wongmartincs impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT ngsiewc impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT chanfranciskl impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling
AT chanpaulks impactofpreservationmethodand16srrnahypervariableregionongutmicrobiotaprofiling