Cargando…
Drug sensitivity prediction with high-dimensional mixture regression
This paper proposes a mixture regression model-based method for drug sensitivity prediction. The proposed method explicitly addresses two fundamental issues in drug sensitivity prediction, namely, population heterogeneity and feature selection pertaining to each of the subpopulations. The mixture re...
Autores principales: | Li, Qianyun, Shi, Runmin, Liang, Faming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392252/ https://www.ncbi.nlm.nih.gov/pubmed/30811440 http://dx.doi.org/10.1371/journal.pone.0212108 |
Ejemplares similares
-
Markov neighborhood regression for statistical inference of high‐dimensional generalized linear models
por: Sun, Lizhe, et al.
Publicado: (2022) -
Poisson Mixture Regression Models for Heart Disease Prediction
por: Mufudza, Chipo, et al.
Publicado: (2016) -
Unbiased Prediction and Feature Selection in High-Dimensional Survival Regression
por: Laimighofer, Michael, et al.
Publicado: (2016) -
Segmentation of High Dimensional Time-Series Data Using Mixture of Sparse Principal Component Regression Model with Information Complexity
por: Sun, Yaojin, et al.
Publicado: (2020) -
Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees
por: Mushtaq, Khurram, et al.
Publicado: (2023)