Cargando…
Producing knowledge by admitting ignorance: Enhancing data quality through an “I don’t know” option in citizen science
The “noisy labeler problem” in crowdsourced data has attracted great attention in recent years, with important ramifications in citizen science, where non-experts must produce high-quality data. Particularly relevant to citizen science is dynamic task allocation, in which the level of agreement amon...
Autores principales: | Torre, Marina, Nakayama, Shinnosuke, Tolbert, Tyrone J., Porfiri, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392254/ https://www.ncbi.nlm.nih.gov/pubmed/30811452 http://dx.doi.org/10.1371/journal.pone.0211907 |
Ejemplares similares
-
Matching individual attributes with task types in collaborative citizen science
por: Nakayama, Shinnosuke, et al.
Publicado: (2019) -
Don’t ignore perimenopause
por: Prior, Jerilynn C., et al.
Publicado: (2023) -
The don’t know option in progress testing
por: Ravesloot, C. J., et al.
Publicado: (2015) -
Using demographics toward efficient data classification in citizen science: a Bayesian approach
por: De Lellis, Pietro, et al.
Publicado: (2019) -
Commentary: When we don't know what we don't know
por: Paone, Gaetano
Publicado: (2020)