Cargando…
Simulating speech processing with cochlear implants: How does channel interaction affect learning in neural networks?
We introduce a novel machine learning approach for investigating speech processing with cochlear implants (CIs)—prostheses used to replace a damaged inner ear. Concretely, we use a simple perceptron and a deep convolutional network to classify speech spectrograms that are modified to approximate CI-...
Autores principales: | Grimm, Robert, Pettinato, Michèle, Gillis, Steven, Daelemans, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392264/ https://www.ncbi.nlm.nih.gov/pubmed/30811448 http://dx.doi.org/10.1371/journal.pone.0212134 |
Ejemplares similares
-
The effect of increased channel interaction on speech perception with cochlear implants
por: Goehring, Tobias, et al.
Publicado: (2021) -
Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users
por: Goehring, Tobias, et al.
Publicado: (2017) -
Tailoring the Input to Children's Needs: The Use of Fine Lexical Tuning in Speech Directed to Normally Hearing Children and Children With Cochlear Implants
por: Odijk, Lotte, et al.
Publicado: (2021) -
How does visual language affect crossmodal plasticity and cochlear implant success?
por: Lyness, C.R., et al.
Publicado: (2013) -
Cochlear coverage with lateral wall cochlear implant electrode arrays affects post-operative speech recognition
por: Weller, Tobias, et al.
Publicado: (2023)