Cargando…
Improving preterm newborn identification in low-resource settings with machine learning
BACKGROUND: Globally, preterm birth is the leading cause of neonatal death with estimated prevalence and associated mortality highest in low- and middle-income countries (LMICs). Accurate identification of preterm infants is important at the individual level for appropriate clinical intervention as...
Autores principales: | Rittenhouse, Katelyn J., Vwalika, Bellington, Keil, Alexander, Winston, Jennifer, Stoner, Marie, Price, Joan T., Kapasa, Monica, Mubambe, Mulaya, Banda, Vanilla, Muunga, Whyson, Stringer, Jeffrey S. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392324/ https://www.ncbi.nlm.nih.gov/pubmed/30811399 http://dx.doi.org/10.1371/journal.pone.0198919 |
Ejemplares similares
-
HIV-associated vaginal microbiome and inflammation predict spontaneous preterm birth in Zambia
por: Price, Joan T., et al.
Publicado: (2022) -
The Zambian Preterm Birth Prevention Study (ZAPPS): Cohort characteristics at enrollment
por: Castillo, Marcela C., et al.
Publicado: (2019) -
Adverse birth outcomes and their clinical phenotypes in an urban Zambian cohort
por: Price, Joan T, et al.
Publicado: (2020) -
Vaginal progesterone to prevent preterm delivery among HIV-infected pregnant women in Zambia: A feasibility study
por: Price, Joan T., et al.
Publicado: (2020) -
Highly diverse anaerobe-predominant vaginal microbiota among HIV-infected pregnant women in Zambia
por: Price, Joan T., et al.
Publicado: (2019)