Cargando…

EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling

Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein re...

Descripción completa

Detalles Bibliográficos
Autores principales: Loucks, Catrina M, Park, Kwangjin, Walker, Denise S, McEwan, Andrea H, Timbers, Tiffany A, Ardiel, Evan L, Grundy, Laura J, Li, Chunmei, Johnson, Jacque-Lynne, Kennedy, Julie, Blacque, Oliver E, Schafer, William, Rankin, Catharine H, Leroux, Michel R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392500/
https://www.ncbi.nlm.nih.gov/pubmed/30810526
http://dx.doi.org/10.7554/eLife.37271
_version_ 1783398487021322240
author Loucks, Catrina M
Park, Kwangjin
Walker, Denise S
McEwan, Andrea H
Timbers, Tiffany A
Ardiel, Evan L
Grundy, Laura J
Li, Chunmei
Johnson, Jacque-Lynne
Kennedy, Julie
Blacque, Oliver E
Schafer, William
Rankin, Catharine H
Leroux, Michel R
author_facet Loucks, Catrina M
Park, Kwangjin
Walker, Denise S
McEwan, Andrea H
Timbers, Tiffany A
Ardiel, Evan L
Grundy, Laura J
Li, Chunmei
Johnson, Jacque-Lynne
Kennedy, Julie
Blacque, Oliver E
Schafer, William
Rankin, Catharine H
Leroux, Michel R
author_sort Loucks, Catrina M
collection PubMed
description Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy.
format Online
Article
Text
id pubmed-6392500
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-63925002019-03-04 EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling Loucks, Catrina M Park, Kwangjin Walker, Denise S McEwan, Andrea H Timbers, Tiffany A Ardiel, Evan L Grundy, Laura J Li, Chunmei Johnson, Jacque-Lynne Kennedy, Julie Blacque, Oliver E Schafer, William Rankin, Catharine H Leroux, Michel R eLife Cell Biology Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy. eLife Sciences Publications, Ltd 2019-02-27 /pmc/articles/PMC6392500/ /pubmed/30810526 http://dx.doi.org/10.7554/eLife.37271 Text en © 2019, Loucks et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Loucks, Catrina M
Park, Kwangjin
Walker, Denise S
McEwan, Andrea H
Timbers, Tiffany A
Ardiel, Evan L
Grundy, Laura J
Li, Chunmei
Johnson, Jacque-Lynne
Kennedy, Julie
Blacque, Oliver E
Schafer, William
Rankin, Catharine H
Leroux, Michel R
EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title_full EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title_fullStr EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title_full_unstemmed EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title_short EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
title_sort efhc1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392500/
https://www.ncbi.nlm.nih.gov/pubmed/30810526
http://dx.doi.org/10.7554/eLife.37271
work_keys_str_mv AT louckscatrinam efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT parkkwangjin efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT walkerdenises efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT mcewanandreah efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT timberstiffanya efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT ardielevanl efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT grundylauraj efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT lichunmei efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT johnsonjacquelynne efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT kennedyjulie efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT blacqueolivere efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT schaferwilliam efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT rankincatharineh efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling
AT lerouxmichelr efhc1implicatedinjuvenilemyoclonicepilepsyfunctionsattheciliumandsynapsetomodulatedopaminesignaling