Cargando…

Efficacy and safety of micafungin for the treatment of patients with proven or probable invasive aspergillosis: A non-comparative, multicenter, phase IV, open-label study

INTRODUCTION: Few studies have assessed the efficacy and safety of micafungin in patients with proven or probable invasive aspergillosis (IA). This was the aim of the current study, which was conducted in 22 hospitals in China, where micafungin was approved for treatment of IA in 2006. METHODS: This...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Yu, Song, Yongping, Zhou, Fang, Liu, Ting, Jiang, Ming, Zhao, Xielan, Huang, Xiaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392632/
https://www.ncbi.nlm.nih.gov/pubmed/29384927
http://dx.doi.org/10.1097/MD.0000000000009443
Descripción
Sumario:INTRODUCTION: Few studies have assessed the efficacy and safety of micafungin in patients with proven or probable invasive aspergillosis (IA). This was the aim of the current study, which was conducted in 22 hospitals in China, where micafungin was approved for treatment of IA in 2006. METHODS: This was a non-comparative, phase IV open-label study (NCT02646774). Eligible patient were adults with proven or probable IA. Efficacy endpoints included rates of overall treatment success (primary endpoint) and clinical improvement, fungal clearance, mortality, and the site of Aspergillus infection (all secondary endpoints). Safety endpoints included incidences of treatment-emergent adverse events (TEAEs), serious AEs (SAEs), and adverse drug reactions (ADRs). These endpoints were reported descriptively with associated 95% confidence intervals (CI); no hypotheses were tested. RESULTS: The study was discontinued early due to low patient recruitment, which did not allow for the planned sample size to be reached. In total, 68 patients were enrolled: 42 into the full analysis set (for efficacy) and 61 into the safety analysis set. All patients were Han Chinese; the majority were male (n = 26; 61.9%) and ≤60 years of age (n = 35; 83.3%). Rates of overall treatment success, clinical improvement, fungal clearance, and mortality were 45.2% (n = 19/42; 95% CI: 29.85–61.33); 59.5% (n = 25/42; 95% CI: 43.28–74.37), 80.0% (n = 4/5; 95% CI: 28.36–99.49), and 7.1% (n = 3/42; 95% CI: 1.50–19.48), respectively. All patients were diagnosed with pulmonary Aspergillus infection. Overall, 155 TEAEs and 8 SAEs were reported by 37 (60.7%) and 7 (11.5%) patients. The most common TEAEs were decreased platelet count and fatigue (both n = 5; 8.2%) and the most common SAEs were intracranial hemorrhage and lung infection (n = 3; 4.9% and n = 2; 3.3%). Eight ADRs (n = 6; 9.8%) were reported but all were completely remitted or remitting during follow-up. CONCLUSIONS: Results suggest that micafungin is efficacious and well-tolerated in patients with proven or probable IA in China. However, these findings should be interpreted with care, due to the small number of patients included in this study. Further comparative trials should be used to confirm the efficacy and safety of micafungin in patients with proven or probable IA.