Cargando…

Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition

The effect of rice bran protein (RBP) isolate addition on the rheological and structural properties of commercial whipped cream with 25% and 35% fat was investigated. Results showed that increasing the fat content from 25% to 35% leads to an increase in the elastic modulus. Furthermore, by increasin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghorbani‐HasanSaraei, Azade, Rafe, Ali, Shahidi, Seyed‐Ahmad, Atashzar, Azin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392820/
https://www.ncbi.nlm.nih.gov/pubmed/30847166
http://dx.doi.org/10.1002/fsn3.939
_version_ 1783398560237092864
author Ghorbani‐HasanSaraei, Azade
Rafe, Ali
Shahidi, Seyed‐Ahmad
Atashzar, Azin
author_facet Ghorbani‐HasanSaraei, Azade
Rafe, Ali
Shahidi, Seyed‐Ahmad
Atashzar, Azin
author_sort Ghorbani‐HasanSaraei, Azade
collection PubMed
description The effect of rice bran protein (RBP) isolate addition on the rheological and structural properties of commercial whipped cream with 25% and 35% fat was investigated. Results showed that increasing the fat content from 25% to 35% leads to an increase in the elastic modulus. Furthermore, by increasing the amount of RBP from 1% to 3% in both creams, significant increase occurred in the complex modulus. As the fat content increased from 25% to 35%, the slope of flow behavior was increased, which revealed more thinning behavior and pseudoplasticity index of cream. The cream containing 35% fat and 3% RBP had also shown the low index (n = 0.298) which confirmed the firmer structure of the cream. The maximum consistency index (k) obtained was 9.41 for the cream with 35% fat and 3% RBP, which approved its strong foam structure. In general, according to our results it is obvious that whipped cream with the highest amount of fat and the lowest value of protein can lead to maximum stability of the whipping cream. Among the samples, the lowest stiffness was observed in cream of 35% fat, containing 3% rice bran protein. However, cream containing 35% fat and 1% RBP had convenient overrun and good stability. The microstructural results showed that the cream structure has relatively large globular aggregates in network and develops large pores, which permit to retain sufficient water/air. By increasing the fat content of cream from 25% to 35%, the voids and spaces in the cream were significantly decreased and the pores become less which improve the foam structure. Therefore, it can be concluded the cream with more fat has the more overrun and stability. In general, it is possible to improve the foam structure of cream by substituting fat by RBP.
format Online
Article
Text
id pubmed-6392820
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63928202019-03-07 Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition Ghorbani‐HasanSaraei, Azade Rafe, Ali Shahidi, Seyed‐Ahmad Atashzar, Azin Food Sci Nutr Original Research The effect of rice bran protein (RBP) isolate addition on the rheological and structural properties of commercial whipped cream with 25% and 35% fat was investigated. Results showed that increasing the fat content from 25% to 35% leads to an increase in the elastic modulus. Furthermore, by increasing the amount of RBP from 1% to 3% in both creams, significant increase occurred in the complex modulus. As the fat content increased from 25% to 35%, the slope of flow behavior was increased, which revealed more thinning behavior and pseudoplasticity index of cream. The cream containing 35% fat and 3% RBP had also shown the low index (n = 0.298) which confirmed the firmer structure of the cream. The maximum consistency index (k) obtained was 9.41 for the cream with 35% fat and 3% RBP, which approved its strong foam structure. In general, according to our results it is obvious that whipped cream with the highest amount of fat and the lowest value of protein can lead to maximum stability of the whipping cream. Among the samples, the lowest stiffness was observed in cream of 35% fat, containing 3% rice bran protein. However, cream containing 35% fat and 1% RBP had convenient overrun and good stability. The microstructural results showed that the cream structure has relatively large globular aggregates in network and develops large pores, which permit to retain sufficient water/air. By increasing the fat content of cream from 25% to 35%, the voids and spaces in the cream were significantly decreased and the pores become less which improve the foam structure. Therefore, it can be concluded the cream with more fat has the more overrun and stability. In general, it is possible to improve the foam structure of cream by substituting fat by RBP. John Wiley and Sons Inc. 2019-01-28 /pmc/articles/PMC6392820/ /pubmed/30847166 http://dx.doi.org/10.1002/fsn3.939 Text en © 2019 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Ghorbani‐HasanSaraei, Azade
Rafe, Ali
Shahidi, Seyed‐Ahmad
Atashzar, Azin
Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title_full Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title_fullStr Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title_full_unstemmed Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title_short Microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
title_sort microstructure and chemorheological behavior of whipped cream as affected by rice bran protein addition
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392820/
https://www.ncbi.nlm.nih.gov/pubmed/30847166
http://dx.doi.org/10.1002/fsn3.939
work_keys_str_mv AT ghorbanihasansaraeiazade microstructureandchemorheologicalbehaviorofwhippedcreamasaffectedbyricebranproteinaddition
AT rafeali microstructureandchemorheologicalbehaviorofwhippedcreamasaffectedbyricebranproteinaddition
AT shahidiseyedahmad microstructureandchemorheologicalbehaviorofwhippedcreamasaffectedbyricebranproteinaddition
AT atashzarazin microstructureandchemorheologicalbehaviorofwhippedcreamasaffectedbyricebranproteinaddition