Cargando…

ZeBRα a universal, multi-fragment DNA-assembly-system with minimal hands-on time requirement

The recently evolved field of synthetic biology has revolutionized the way we think of biology as an “engineerable” discipline. The newly sprouted branch is constantly in need of simple, cost-effective and automatable DNA-assembly methods. We have developed a reliable DNA-assembly system, ZeBRα (Zer...

Descripción completa

Detalles Bibliográficos
Autores principales: Richter, David, Bayer, Katharina, Toesko, Thomas, Schuster, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393441/
https://www.ncbi.nlm.nih.gov/pubmed/30814590
http://dx.doi.org/10.1038/s41598-019-39768-0
Descripción
Sumario:The recently evolved field of synthetic biology has revolutionized the way we think of biology as an “engineerable” discipline. The newly sprouted branch is constantly in need of simple, cost-effective and automatable DNA-assembly methods. We have developed a reliable DNA-assembly system, ZeBRα (Zero-Background Redα), for cloning multiple DNA-fragments seamlessly with very high efficiency. The hallmarks of ZeBRα are the greatly reduced hands-on time and costs and yet excellent efficiency and flexibility. ZeBRα combines a “zero-background vector” with a highly efficient in vitro recombination method. The suicide-gene in the vector acts as placeholder, and is replaced by the fragments-of-interest, ensuring the exclusive survival of the successful recombinants. Thereby the background from uncut or re-ligated vector is absent and screening for recombinant colonies is unnecessary. Multiple fragments-of-interest can be assembled into the empty vector by a recombinogenic E. coli-lysate (SLiCE) with a total time requirement of less than 48 h. We have significantly simplified the preparation of the high recombination-competent E. coli-lysate compared to the original protocol. ZeBRα is the least labor intensive among comparable state-of-the-art assembly/cloning methods without a trade-off in efficiency.