Cargando…

Man-made microbial resistances in built environments

Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahnert, Alexander, Moissl-Eichinger, Christine, Zojer, Markus, Bogumil, David, Mizrahi, Itzhak, Rattei, Thomas, Martinez, José Luis, Berg, Gabriele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393488/
https://www.ncbi.nlm.nih.gov/pubmed/30814504
http://dx.doi.org/10.1038/s41467-019-08864-0
Descripción
Sumario:Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.